

 Navigation

 	
 index

 	
 next |

 	MONGKIE 0.2.1 documentation

 [image: _images/logoS_48.png]

MONGKIE

MONGKIE [http://yjjang.github.io/mongkie] is a software platform for interactive visualization and analysis of complex omics data in the context of biological networks.

	All components for visualization (e.g. Data-to-Visual mapping and Gene expression overlay), network analysis of defining subgroups, and functional interpretation of network modules can be easily threaded into a pipeline that allows user interaction at each step.

	It was built on top of the Plug-in architecture to support application extension by third-party developers.

Important

In the Case Study, we demonstrate how MONGKIE can be used to identify driver gene candidates and core regulatory modules in the study of TCGA Glioblastoma Multiforme (Brennan et al., 2013).

Table of Contents

	1. Installation
	1.1. System Requirements

	1.2. ZIP Distributions

	1.3. Installable Packages

	1.4. User Directories

	2. Tutorial
	2.1. Import a GBM-altered network

	2.2. Data-to-Visual mapping

	2.3. Network clustering

	2.4. Make a new network from a cluster

	2.5. Import expression log2FCs in normal vs. tumor

	2.6. Functional annotation of a cluster

	2.7. Import expression profiles for 4 GBM subtypes

	2.8. Save as a image, CSV files, GraphML, and a VLG (Visualized Graph) file

	3. Case Study
	3.1. Cancer omics data

	3.2. Extraction of a GBM-altered network

	3.3. Statistical test for significant linkers

	3.4. Network clustering

	3.5. Results

	4. Network Visualization
	4.1. Visual representation of biological entities and interactions

	4.2. Pathway visualization

	4.3. Visual editor UI and Data-to-Visual mapping

	4.4. Exploring network

	4.5. Graph layouts

	5. Network Analysis
	5.1. Network clustering

	5.2. Gene expression overlay

	5.3. Over-representation analysis

	6. Interaction Sources
	6.1. hiPathDB

	6.2. Interaction Manager

	7. User Interface

	8. Import and Export

	9. Implementation
	9.1. Plug-in architecture

	9.2. RESTFul Web service API

	10. References

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

1. Installation

This section describes how to install and run MONGKIE. Installation instructions are provided for Linux , Mac OS X, and Windows.

Caution

If you have an older version on your computer, you should uninstall it and remove the User Directories.

1.1. System Requirements

1.1.1. Recommended hardware requirements

	OS
	Processor
	Memory
	Disk space

	Linux
	Intel Core i5 or equivalent
	2GB (32-bit), 4GB (64-bit)
	1.5GB of free disk space

	Windows
	Intel Core i5 or equivalent
	2GB (32-bit), 4GB (64-bit)
	1.5GB of free disk space

	OS X
	Dual-Core Intel
	4GB
	1.5GB of free disk space

1.1.2. Java

MONGKIE is written in Java, and runs on the Java Runtime Environment. Therefore, the Java runtime (7 or 8) is required to install and run it. You can download the latest version of Java runtime from here [http://www.oracle.com/technetwork/java/javase/downloads/index.html] for Windows and Linux, and OS X Lion (10.7), Mountain Lion (10.8), or Mavericks (10.9).

The tested Java versions are Java 8 and 7u67 for Windows, Linux, and OS X.

Caution

MONGKIE cannot be installed or run using Java 6.0, and OpenJDK [http://openjdk.java.net/] is not supported, be sure to run the official Java version from Oracle’s website [http://www.oracle.com/technetwork/java/javase/downloads/index.html].

1.2. ZIP Distributions

	Download the latest release [https://github.com/yjjang/mongkie/releases/latest] of a ZIP distribution for your OS.

	Unzip it to any directory on your system.

	Run the executable file located in the bin directory

	On Linux, mongkie/bin/mongkie

	On Windows, mongkie\bin\mongkie.exe

	On OS X, mongkie.app/Contents/MacOS/mongkie

1.3. Installable Packages

Download the latest release [https://github.com/yjjang/mongkie/releases/latest] of an installer for your OS.

1.3.1. Linux and Windows

	After the download completes, run the installer.

	For Windows, the installer file has the .exe extension. Double-click the file to run it.

	For Linux, the installer file has the .sh extension. You need to make the installer executable by using the following command: chmod +x <installer-file>. Type ./<installer-file> to start the installation wizard.

	Follow steps in the installation wizard.

1.3.2. OS X

	After the download completes, click on the downloaded .dmg file.

	Drag the mongkie application in your Application folder.

1.4. User Directories

userdir is the directory where MONGKIE stores user configuration data such as window layouts, and various application options. Sometimes your userdir can be corrupted and this results in the MONGKIE behaving weirdly.

To fix such issues, delete userdir entirely, then restart MONGKIE, and allow it to generate a new userdir from scratch. In most cases, this should repair the problems.

userdir is located in:

	On Windows 2K/XP, C:\Documents and Settings\<username>\Application Data\.mongkie

	On Windows Vista or later, C:\Users<username>\AppData\Roaming\.mongkie

	On OS X, /Users/<username>/Library/Application Support/mongkie

	On Linux, /home/<username>/.mongkie

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

2. Tutorial

This chapter provides step-by-step tutorials for the Case Study and more.

Note

Input data files to be imported into the MONGKIE in this tutorial were generated by the extractAlteredNet_GBM.R. Refer to Case Study for details about the method. Briefly, starting with somatic mutations, CNAs, and gene expression data sets downloaded from UCSC Cancer Browser [https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/#?bookmark=ce15f29a905207cbf3d0dbcdf9d35c18], the R script does the following tasks.

	Calculate expression log2FCs of each gene in normal vs. tumor conditions.

	Calculate expression means of each gene in 4 GBM subtypes.

	Extract a sub-network of altered (somatic mutation or CNV) genes in STRING [http://string-db.org/].

	Calculate expression correlations between each pair of genes in the extracted network.

	Write vertices, edges, and expression related data files.

You can download the R script and generated input files in supplementary_data.zip.

Table of Contents

	2.1. Import a GBM-altered network

	2.2. Data-to-Visual mapping

	2.3. Network clustering

	2.4. Make a new network from a cluster

	2.5. Import expression log2FCs in normal vs. tumor

	2.6. Functional annotation of a cluster

	2.7. Import expression profiles for 4 GBM subtypes

	2.8. Save as a image, CSV files, GraphML, and a VLG (Visualized Graph) file

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	2. Tutorial

2.1. Import a GBM-altered network

You will import a GBM-altered network from 2 CSV files for nodes and edges,

	Select File ‣ Import ‣ Comma-Separated Values (CSV), now a wizard window will guide you to remaining steps.

[image: ../_images/import_csv_menu.png]

	Choose tcga_gbm_vertices.csv, and set ID column to name, Label column to hgnc_symbol, then click the Next button.

[image: ../_images/import_node_table_step.png]

	Choose tcga_gbm_edges.csv, and set Source column to from, Target column to to, then click the Finish button.

[image: ../_images/import_edge_table_step.png]

	A report dialog finally shows the summary of the imported graph, including number of nodes and edges, type of graph, issues occurred during the importing process etc. Click the OK button.

[image: ../_images/import_report.png]

	The imported network looks like below:

[image: ../_images/import_result.png]

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	2. Tutorial

2.2. Data-to-Visual mapping

Data-to-Visual mapping allows you to map data attributes of nodes or edges to various visual styles.

	(Optional) Before proceeding to further steps, change the default font for nodes to Sony Sketch EF that was used in figures in the Case Study.

Note

To use the Sony Sketch EF font, you should download and install it on your system. It is available at here [http://www.fonts2u.com/sony-sketch-ef.font].

	To open the Display Options panel, click the [image: arrowup-icon] button at the bottom-right of a network display window.

	Select the Nodes tab, and click the Font name button, and choose a font name, style, and size, then click the OK button.

	To close the Display Options panel, click the [image: arrowdown-icon] button at the top-right of the panel.

[image: ../_images/change_nodes_font.png]

	To map the alteration frequencies of genes to the sizes of nodes,

	Select the Visual Mapping window at the top-left of main application.

	Select the Nodes tab button.

	Select the [image: size-icon] icon.

	In the drop-down list, choose the Freq data attribute to map.

	Click the Spline... button to open the Spline Editor.

	Choose a pre-defined scale function.

	Adjust the transform scale to make more frequently altered genes be magnified.

	Close the Spline Editor.

	Click the Apply button.

[image: ../_images/freq_to_node_size.png]

	Now the network looks like the following:

[image: ../_images/freq_to_node_size_result.png]

	Now you will map a different shape to the linker nodes using discrete Data-to-Visual mapping.

	Select the Discrete tab at the bottom of Visual Mapping window.

	In the drop-down list, choose the Type data attribute of Nodes to map.

	Expand the LINKER, now various editors for visual styles will be shown.

	In the Shape filed, click the ... button to show up the node shape chooser.

	Choose the Diamond shape, and click the OK button.

[image: ../_images/type_to_node_shape.png]

	Now the network looks like the following:

[image: ../_images/type_to_node_shape_result.png]

	You can map expression correlations to the thicknesses of edges.

	Select the Continuous tab at the bottom of Visual Mapping window.

	Select the Edges tab button.

	Select the [image: size-icon] icon.

	In the drop-down list, choose the i.weight data attribute to map.

	Set the Max value to 10.

	Click the Spline... button to open the Spline Editor.

	Restore the scale function to the linear function.

	Click the Apply button.

[image: ../_images/cor_to_edge_thickness.png]

	The final network is shown below:

[image: ../_images/data_to_visual_mapping_result.png]

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	2. Tutorial

2.3. Network clustering

You imported the GBM-altered network into MONGKIE, now you will apply the MCL Network clustering algorithm to identify network modules representing genes with topological proximity and correlated expression.

Hint

In the edge table, you can see that the i.weight column contains expression correlations.

[image: ../_images/edge_table_iweight.png]
MONGKIE internally assigns the values of i.weight column in a edge table to the weights of edges for clustering. Therfore, to give weights to edges in your network, you should set the name of the column to i.weight.

	In the Clustering window at the top-left of main application

	Choose the MCL algorithm in the drop-down list.

	Click the [image: run-button] button to start the algorithm.

	After a little, the identified clusters will be listed.

[image: ../_images/mcl_clustering.png]

	You can define these clusters as group nodes on the network.

	Select top 5 largest clusters by clicking Cluster 1 and Cluster 5 holding down the Shift key.

	Right-click on the selection will show up a pop-up menu. Click the Group menu item.

[image: ../_images/mcl_grouping.png]

	Now you see that group nodes on the network are too large or a lot of overlapping with each other. You can use the force-directed algorithm to lay out them with more optimized size and position.

	In the Layout window at the bottom-left of main application, choose the Force Directed algorithm.

	Click the [image: run-button] bottom to start the algorithm.

	Set Spring Coefficient to the minimu value 4.0E-5 by dragging the slider tick to the left-most.

	When being satisfied with the result, you can stop the running of algorithm by clicking the [image: stop-button] button.

[image: ../_images/mcl_layout.png]

	The final network looks like the following:

[image: ../_images/mcl_network.png]

Tip

How to change default shape of group nodes on the network.

In the Display Options panel, you can globally set various visualization options for nodes, edges, and groups:

	To open the Display Options panel, click the [image: arrowup-icon] button at the bottom-right of a network window.

	Select the Group tab.

	Choose one of listed shapes.

[image: ../_images/display_options_group.png]

For editing a individual component, you can use the Visual Editor UI.

Tip

How to change colors of cluster in the Clustering window.

Initially the colors of cluster are assigned randomly. You can regenerate random colors for all clusters:

[image: ../_images/regen_cluster_colors.png]

Or, you can manually set the color of individual cluster:

	Press and keep holding down the mouse left-button on the color box on the left of a cluster name.

	While holding the mouse button down, move the pointer in the color panel.

	Press ALT key down to show constant colors.

	Press SHIFT key down to show desaturated colors.

	Press both CTRL and ALT keys down to show recent colors.

	When you release the mouse button, a color under the pointer is set to the cluster’s color.

[image: ../_images/change_cluster_colors.png]

Of course, you can use the Visual Editor UI for changing the color of group node.

Tip

By double-clicking the name of a cluster listed in the Clustering window, you can edit name of the cluster.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	2. Tutorial

2.4. Make a new network from a cluster

In this section, you will create new networks from previously identified clusters. A new network consists of nodes and edges only in the cluster it derived from.

	Right-click on the group node for cluster 5 on the network, then a pop-up menu for the group node will be shown up.

[image: ../_images/menu_on_group.png]

	Click the New Graph menu item. You will see a new network created in a new tab.

	Repeat above steps on the cluster 3. Two networks derived from Cluster 5 and Cluster 3 are shown below:

[image: ../_images/new_graph_egfr.png]
[image: ../_images/new_graph_tp53.png]

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	2. Tutorial

2.5. Import expression log2FCs in normal vs. tumor

You will import gene expression log2FCs between normal vs. tumor condition in all TCGA GBM patients. and map them to the colors of nodes.

	Select the Network tab of previously created network from Cluster 3 in the original network.

[image: ../_images/new_graph_tp53.png]

	Select File ‣ Import ‣ Attributes from CSV File.

[image: ../_images/import_attr_menu.png]

	In the Import Attributes dialog,

	Be sure Attributes for: Node to be checked.

	Choose a CSV file to import: tcga_gbm_exp_log2fc.csv

	Check The first line in a CSV file contains column names

	Key Column in Annotation File: Gene_Symbol

	Key Attribute in Network: hgnc_symbol

	Click the OK button.

[image: ../_images/import_attr_dialog.png]

	Now you can see a newly added column log2FC in the node table as shown in below:

[image: ../_images/import_attr_col.png]

	In the Visual Mapping (Nodes) window,

	Click [image: color-icon] icon.

	Choose log2FC in the drop-down list.

	Click [image: pallet-icon] to show up a palette chooser.

	Select [image: ryb-icon] (Red-Yellow-Blue).

	Click [image: invert-icon] to map Red to the maximum and Blue to the minimum value.

	Check [image: list-icon] to show a list of node names with their mapped colors ranked by values.

	Click the Apply button.

[image: ../_images/log2fc_to_color.png]

	The final network of Cluster 3 is shown below:

[image: ../_images/tp53_network_log2fc.png]

	Repeat above steps on the network of Cluster 5.

Tip

How to add more gradation points and colors.

	You can add any number of gradation points by clicking desired positions on the color bar.

	Once you have a gradation point, you can edit its color by double-clicking the point.

	You can also move the points by dragging them.

[image: ../_images/gradation_points.png]

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	2. Tutorial

2.6. Functional annotation of a cluster

In this section, you will perform a GO Over-representation analysis for genes in Cluster 3 and visually annotate the cluster with representative functions via the Visual Editor UI.

	Make sure you select the Network tab of Cluster 3.

[image: ../_images/tp53_network_log2fc.png]

	Select the Window ‣ Enrichment Analysis.

[image: ../_images/enrich_analysis_win.png]

	Before going to remaining steps, you need to import symbol2uniprot_all.csv into the node table. The reason is that our in-house GO over-representation analysis tool expects IDs of gene set to be UniProt Accessions.

	Select File ‣ Import ‣ Attributes from CSV File as described in previous section.

	In the Import Attributes dialog,

	Choose a CSV file to import: symbol2uniprot_all.csv

	Key Column in Annotation File: HGNC.symbol

	Key Attribute in Network: hgnc_symbol

[image: ../_images/import_uniprot.png]

	In the Enrichment Analysis window,

	Choose Gene Ontology in the drop-down list.

	Set Gene ID column to UniProt.Ac.

	Set the multiple testing Correction method to Bonferroni.

	Click the Run button.

[image: ../_images/enrich_analysis_run.png]

	After a little, the result is shown in the Enrichment window at the bottom of main application.

	You can see that GO terms of cell cycle checkpoint and DNA damage checkpoint are listed in first and second rows respectively.

	Select the cell cycle checkpoint GO term, the click [image: info-icon] icon to see the details about the term.

[image: ../_images/enrich_analysis_result.png]

	Next you will visually annotate the group node of Cluster 3 with two representative functions.

Caution

Now be sure to switch to the original network tab named tcga_gbm_edges.

	Click the group node of cluster 3 in the original GBM-altered network.

	In the Editor window,

	Click the ... icon in Name property to edit a group name.

	Enter DNA damage response and Cell Cycle.

	Set the Font property to Droid Serif 80 Bold or what you want. (You can open the font chooser by clicking ... button in the Font property)

[image: ../_images/group_name_edit.png]

	The result is shown below:

[image: ../_images/group_name_result.png]

Tip

How to define a group node that contains nodes (genes or proteins) with a same function after GO over-representation analysis.

After GO over-representation analysis of Cluster 3:

	Select the TreeTable view tab in the Enrichment result window.

	Select a GO term named kinase binding at molecular_function > binding > protein binding > enzyme binding > kinase binding.

	Click the [image: group-icon] button.

[image: ../_images/kinase_binding_tree.png]

	After clicking the group node named kinase binding, edit its visual properties in the Editor window.

	Set Font to Droid Serif 80 Bold.

	Set Text Color to Orange.

	Set Shape to Convex hull of the lines.

[image: ../_images/kinase_binding_edit.png]

	Manually adjust the positions of nodes like below:

[image: ../_images/GO_kinase_binding.png]

	Select a GO term named cell cycle at biological_process > cellular process > single-organism cellular process > cell cycle.

	Click the [image: group-icon] button.

[image: ../_images/cell_cycle_tree.png]

	After clicking the group node named cell cycle, edit its visual properties in the Editor window.

	Set Font to Droid Serif 100 Bold.

	Set Text Color to Blue.

	Set Shape to Rectangle.

[image: ../_images/cell_cycle_edit.png]

	Now you can see that cell cycle contains all genes in kinase binding. The final result looks like below:

[image: ../_images/GO_cell_cycle.png]

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	2. Tutorial

2.7. Import expression profiles for 4 GBM subtypes

Now overlay average gene expressions in GBM patients of 4 subtypes onto the GBM-altered network.

	Select the original GBM-altered network tab named tcga_gbm_edges.

	Select Window ‣ Heat Map.

[image: ../_images/heatmap_menu.png]

	In the just opened Heat Map window, click the Load heatmap data... label.

[image: ../_images/heatmap_load.png]

	In the Import dialog,

	Choose tcga_gbm_exp_subtypes.csv file to import.

	Make sure that Key column to map is hgnc_symbol.

	Be sure to check First line in the file contains header names.

	Click the OK button.

[image: ../_images/heatmap_import.png]

	Now your screen looks like the following:

[image: ../_images/F1A.png]

	In the bottom panel of application,
	Drag the slider tick to Mesenchymal to see average expressions in patients of mesenchymal subtype.

	You can switch subtypes automatically to see animated pictures by clicking [image: play-icon] button.

Tip

You can clear the heatmap and mapped colors in the network by clicking [image: clear-icon] button in the Heat Map window.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	2. Tutorial

2.8. Save as a image, CSV files, GraphML, and a VLG (Visualized Graph) file

	You can lauch export dialogs from File ‣ Export ‣ Graph Files... or Image Files....

	You can save the final visualization as one of supported image formats:

	Use SVG (Scalable Vector Graphics) or EPS (Encapsulated PostScript) for vector graphics.

	Use PNG, JPG, GIF, or BMP formats for bitmap images.

[image: ../_images/export_image_dialog.png]

	You can export the graph to:

	A GraphML [http://graphml.graphdrawing.org/] file that contains all graph elements in one formatted file, or

[image: ../_images/export_graphml_dialog.png]

	Two CSV files, each stores list of nodes and edges in a tabular format respectively.

[image: ../_images/export_csv_dialog.png]

	A VLG (Visual Graph) file that stores all visualization-wide information as well as graph data.

[image: ../_images/export_vlg_dialog.png]

Tip

CSV files for nodes or edges can be exported in the Data Table window.

[image: ../_images/export_csv_in_datatable.png]

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

3. Case Study

High-throughput studies of tumor biology at multiple levels, including genome, transcriptome, and proteome, have been resulting in a greatly increased volume of cancer omics data. Given huge amount of cancer omics data, it is a major challenge to distinguish driver mutations from passengers, and to reveal functional relationships between them. One powerful approach to the challenge is to analyze data on the context of biological networks. For example, integration of mutation, copy number, and gene expression profiles with a biological interaction network has been proposed as an approach to identify functional cancer drivers, relying on the assumption that they will cluster on the network (Bertrand et al., 2015).

In this section, we demonstrate how MONGKIE can facilitate the study of structural pattern of altered genes in the TCGA study of Glioblastoma Multiforme (Brennan et al., 2013) on the STRING [http://string-db.org/] network to identify candidate driver genes and core gene modules perturbed by them.

Note

See Tutorial for a step-by-step tutorial for this case study.

3.1. Cancer omics data

Somatic mutations, DNA copy number alterations, and RNA-seq expressions level 3 data for TCGA GBM cases were obtained from the UCSC Cancer Browser [https://genome-cancer.ucsc.edu/proj/site/hgHeatmap/#?bookmark=ce15f29a905207cbf3d0dbcdf9d35c18]. Downloaded files for each data type are listed in Table 3.1.

Table 3.1 TCGA GBM datasets processed by UCSC Cancer Browser

 4. Network Visualization

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

4. Network Visualization

Like other network visualization tools, MONGKIE also provides basic graph representations (See Visual representation of biological entities and interactions) and many interactive ways to explore or edit a network, including Visual Editor UI, and Data-to-Visual Mapping (See Visual editor UI and Data-to-Visual mapping), zooming, filtering, searching (See Exploring network), and various graph layouts (See Graph layouts) etc. Furthermore, we implemented extended models for visualization of more complicated or interwoven biochemical reactions that can be multi-modal or hyper-graphs (Saraiya et al., 2005) involving more than two sub-components, therefore basic graph representations failed to model, for example, formation of protein complexes, interactions controlled by others (See Pathway visualization).

Table of Contents

	4.1. Visual representation of biological entities and interactions

	4.2. Pathway visualization

	4.3. Visual editor UI and Data-to-Visual mapping

	4.4. Exploring network

	4.5. Graph layouts

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 4.1. Visual representation of biological entities and interactions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	4. Network Visualization

4.1. Visual representation of biological entities and interactions

Graphical representations of biological networks includes how to intuitively visualize a set of connected nodes (or vertice) corresponding to biological entities, including genes, gene products (protein, transcript factor, miRNA, etc.), small molecules (compound, metabolite etc.), protein family and complex, and their links (or edges), such as physical or genetic interactions, regulatory events (transcriptional and translational activation or inhibition, phosphorylation, etc.), co-expression, shared protein domain, complex formation, trans-location and other biochemical reactions.

[image: An example of network visualization]
Fig. 4.1 An example of visualization of biological networks

This illustrates how MONGKIE visually represents biological entities and relationships between them, by visualizing an example network, Glucocorticoid receptor regulatory network, which is a signaling pathway curated by the NCI-Nature PID (Schaefer et al., 2009).

MONGKIE provides the sophisticated data models for visualization of biological networks with advanced graph drawing techniques, and therefore can represent different types of biological entities and interactions between them with out-of-the-box visual styles, shown in Fig. 4.1. Both nodes and edges differ in their style according to their biological meaning. The style of nodes - e.g. label, font, shape, color, size and icon image - shows the type and state of biological components, and edges linking a relation participant with the information about the role also differ in their style - e.g. shape or thickness or color of lines, shape or color of arrows as well as label and font.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 4.2. Pathway visualization

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	4. Network Visualization

4.2. Pathway visualization

MONGKIE provides a built-in software module for pathway visualization, which supports visual analytics and exploratory studies of metabolic or signaling pathways in an interactive fashion tightly integrated with the human integrated pathway database, hiPathDB (Yu et al., 2012).

Like other types of biological interactions that can be modeled as regular binary-graphs, where interactions are between exactly two interactors, biological pathways also can be represented as a graph consisting of nodes and edges. Although these simple models have been shown to yield biological insights, biological pathways can be complex multi-modal or hyper-graphs (Saraiya et al., 2005), in which an edge could connect an arbitrary number of nodes or might connect a node to another edge. Therefore basic graph representations are incapable of modeling more complicated and interwoven biochemical reactions that involve more than two sub-components, e.g. the formation of protein complexes, and interactions that controlled by external controllers. In order to visually capture such complex biochemical events, MONGKIE presents an optimized pathway visualization based on the sophisticated visualization model taking into consideration these important domain-specific knowledges.

[image: Visual models]
Fig. 4.2 Visual models for the pathway visualization

A-1 Hierarchical modeling of protein complex assembly (orange border) can be flattened by splitting nodes representing complexes into their own individual members. A-2 Protein complexes (red nodes). A-3 Protein family (F icon). A-4 Dimer (D icon). A-5 Sub-cellular location (red icon). B-1 Multiple edges (gray and blue). B-2 Cellular states of nodes, mode of interactions of edges (activation, inhibition, phospholyration, etc.) B-3 Self interactions. B-4 Hyper-edges connect nodes to another edges (yellow), for example, one molecule (node) might prevent some other interaction (edge) from occurring.

Fig. 4.2 illustrates how diverse types of complex components and their relationships in biological pathways are visually represented in MONGKIE. A node representing a biological molecule in a pathway visualization may be either a protein, family, complex, dimer, enzyme, other small molecules (e.g. compound, metabolites), or especially a super-node which is a hierarchically decomposed composite node representing adjacency and inclusion relationships, e.g. the hierarchical modeling of protein complex assembly can be flattened by splitting nodes representing complexes into their own individual members (see Fig. 4.2 A). An edge in a pathway visualization represents a relationship or some form of interaction between nodes. The interaction could be one of many types: complex formation, activation, inhibition, aggregation, trans-location, catalysis, chemical modification, etc. In most cases, single-line connections are insufficient to capture the whole range of information contained in a biological pathway, because biological entities are often linked by more than one type of relationship. In such cases, multi-edge networks offer the possibility to link two entities by multiple edges, in which every edge having a different meaning. Also, hyper-edge connects a node to another edge, e.g. an inhibitory interaction (edge) actually indicates a biological process by which one molecule (node) might prevent some other interaction (edge) from occurring (see Fig. 4.2 B).

All theses different types of nodes and edges in the pathway visualization are visually represented with their distinct visual styles and additional informations, including their sub-cellular location, cellular state - e.g. activated, inhibited, phospholyrated, etc. Each component of pathways have informations about the originating data source, and hyper-links to the corresponding web pages is presented at the table view to link relevant databases - eg. NCBI, PubChem, etc. The force-directed layout algorithm (Frick et al., 1999) is optimized for the virtually automatic placement of components in the pathways.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 4.3. Visual editor UI and Data-to-Visual mapping

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	4. Network Visualization

4.3. Visual editor UI and Data-to-Visual mapping

Every component - nodes, edges, and groups - of the visualization model has a set of visual properties, including label text, text font, stroke, shape, size, color, line shape and width etc. These visual styles of them can be fully customized individually through the integrated Visual Editor UI which allows the user to edit them in any way the user desires with numerous predefined palettes. Actual UIs for editing visual properties of nodes, edges, and groups are shown in Fig. 4.3.

[image: Visual editors]
Fig. 4.3 Visual Editor UIs

Visual editor UIs for (A) nodes, (B) edges, and (C) groups with their members.

Each component in the network can have associated data attributes possibly describing visual properties of them. In addition to selective and manual editing of visual styles, MONKGIE also provides a very useful way to automatically set visual aspects of components based on their data attributes. This continuous or discrete Data-to-Visual attribute mapping allows researchers to synoptically view multiple types of data in a network context (see Fig. 4.4). Data-to-Visual mapping lets the user, for example, load omics data from various high-throughput experiments, e.g. expression profiles, and visually project them into the network by automatically transforming data to some graphical attributes, e.g. color, size, visibility etc.

[image: Data-to-Visual mapping]
Fig. 4.4 Continuous and discrete Data-to-Visual Mapping

Using an example network that are modeling cross-talks between biological pathways, (A) the number of genes in each pathway was continuously mapped to visual properties (size and color) of the corresponding pathway node. (B) data sources (KEGG or BioCarta) of each pathway were discretely mapped to node colors.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 4.4. Exploring network

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	4. Network Visualization

4.4. Exploring network

In order to substantially facilitate network navigation and information extraction, MONGKIE provides sophisticated options to explore networks in highly interactive ways, including searching, filtering, grouping, manual or automatic node selection, highlight, dragging, zoom and panning the display, overview of the complete network, and lastly data table view displaying attributes of nodes and edges in a tabular format.

MONGKIE provides easy-to-use search functions for the loaded network. One can enter any keyword or regular expression to search all data attributes held in the nodes and edges. The matching nodes or edges immediately highlighted in the visualization; and selection in the visualization propagates to the selection of the relevant rows in the data table scrolling to them, and vice versa. Furthermore, the network can be filtered down to interactions meeting a given filtering constraint according to their attributes. For instance, the network may be filtered to show only proteins occurring in particular locations, thus reducing the network complexity and restricting the one’s attention only to interactions within a given sub-cellular location, and this could greatly improve the visual perception of complex biological networks.

Given the large and complex networks, one common approach to interpret and visualize such networks is trying to display the complete network on the screen and providing functionalities to zoom, pan, and overview of the network for exploration. Like many other network visualization tools, MONGKIE provides these basic techniques for network navigation too. However, as the size and complexity of interactions grow, it is increasingly impossible to understand underlying structures and extract biological insights from such huge networks just using those basic navigation techniques. Another improved strategy is to dissect the complete network into smaller sub-networks that are manageable, biologically significant regions that can be understandable (Gehlenborg et al., 2010). These sub-networks are typically defined as, for example, sets of proteins that are occurring at the same sub-cellular location, or that belong to similar functional GO terms, or that are members of a densely connected cluster identified through the established network clustering methods. The resultant sub-networks are typically of a size that is more amenable to visualization and analysis.

In order to specifically support of these processes of dissection, MONGKIE provides a variety of ways to define groups of functionally or topologically related nodes, including enrichment analysis for functional modules (See Over-representation analysis), clustering analysis for topological clusters (See Network clustering), grouping by manual selection, or automatic partitioning of nodes according to their attributes. The defined groups or sub-networks are visually represented with distinct styles and importantly laid out separately from other parts in a way that automatically attracts each other nodes in a group while repelling other groups (See Fig. 5.1), and this geometric separation is essential to focus only on particular groups without being disturbed by unnecessary or noisy interactions. Additionally, one can create a new visualization of each sub-network, then analysis it independently from original one from which it derived.

MONGKIE is developed specially with these grouping functionalities in mind as one of main development goals so that it can be used to help dissect large interactions, thus reducing the overall complexity, and focusing on smaller but biologically interesting parts to gain biological insights without being overwhelmed by complexity and noises in the network.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 4.5. Graph layouts

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	4. Network Visualization

4.5. Graph layouts

Graph layout algorithms are used to place graph nodes and edges in various geometric distribution for the clarity and readability of networks such that the number of edges crossing minimized and that the layout represents the overall structure of the network legibly.

A variety of state-of-the-art layout algorithms are implemented in MONGKIE, including Circular, Grid, Fruchterman-Reingold (Thomas et al., 1991), Radial Tree (Book et al., 2001), and Force-Directed (Frick et al., 19999) layouts, both for efficiency and quality (see Fig. 4.5).

[image: Graph layouts]
Fig. 4.5 Graph Layouts

A variety of state-of-the-art layout algorithms are implemented in MONGKIE, including Circular, Grid, Fruchterman-Reingold, Radial Tree, and Force-Directed.

Like most of other typical network visualization softwares, we try a force-directed layout first because this layout can usually well organize most biological networks based on the non-deterministic algorithm that lets forces between nodes influence the position of the node in the network. All nodes exert repulsive force on the others whereas connected nodes are attracted to each other. After several iterations in which the positions are adjusted according to the calculated force, the layout stabilizes, keeping edge-crossings to a minimum (Herman et al., 2000 and Heer et al. 2005). It also visually animate the process for laying out the network so that one can watch nodes in the network incrementally being placed in optimum positions and can terminate the algorithm when a good layout is obtained. However, this layout quickly becomes inadequate if the size and complexity of network are too larger to handle and interact. For such cases, MONGKIE provides an opportunity to go without animations or to choose other faster but simpler one - e.g. circular, grid etc.

[image: Layout control UI]
Fig. 4.6 UI for controlling layouts

Each layout algorithm can be easily started, canceled, and customized through the unified layout control UI shown in Fig. 4.6. Highly configurable layout algorithms also allow the user to change layout settings in real-time, and therefore dramatically increase user feedback and experience. For instance, settings of the force-directed layout, including gravity, spring and forces, can be configured and immediately applied even while the algorithm is running.

In addition to automatic layout algorithms, MONGKIE offers another way to interactively change the layout of the network by manually dragging each node or user-defined groups into any positions, and this is very useful in fine-tuning the automatic layout or emphasizing important nodes or biologically significant regions in the network by geometrically separating them from other parts.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 5. Network Analysis

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

5. Network Analysis

MONGKIE is designed for the both visualization of biological networks and also analysis of these networks with a seamless integration between two procedures. MONGKIE includes several of network analytical methods, such as network clustering, overlay of expression profiles, and over-representation analysis, to recognize putative functional or structural patterns, and uncover interesting biological meanings from biological interaction networks.

Table of Contents

	5.1. Network clustering

	5.2. Gene expression overlay

	5.3. Over-representation analysis

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 5.1. Network clustering

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	5. Network Analysis

5.1. Network clustering

Fundamentally network-based approaches in systems biology are based on the hypothesis that biological entities rarely act alone in the cell, instead they interact spatiotemporally with others, forming modules, in order to perform specific cellular functions (Hartwell et al., 1999 and Alberts et al., 1998). Graph-based clustering algorithms that are mainly developed in graph theory and recently computational systems biology have been successfully applied to the study of detection of protein complexes (Krogan et al., 2006) or families (Enright et al., 2002), or identification of functions of uncharacterized proteins (Bader et al.,2002), or extraction of co-expressed clusters from co-expression networks (Lee et al., 2004), etc., and shown to obtain good performances for extracting such modules from a variety of biological interactions.

These so-called ‘network clustering’ methods are also known to be less susceptible to inherent false-positives and more accurately predict modules made up of functionally relate nodes rather than conventional iterative pair-wise clustering, where individual relationship - e.g. sequence similarity, co-expression - between two biological entities is investigated without considering structural patterns in their interactions with neighbors (Freeman et al., 2007).

MONGKIE currently incorporates two popular structure-based network clustering algorithms, including MCODE (Molecular COmplex DEtection algorithm), MCL (Markov CLustering algorithm), and these make it easy to find densely inter-connected, thus functionally related nodes in biological interactions, exploit both local and also global structural patterns, and visually map them onto the network. MCODE is a graph theoretic clustering algorithm for finding molecular complex in large protein interaction networks (Bader and Hogue, 2003). The MCODE plugin, which is implemented by porting from the pre-existing plug-in in Cytoscape (Shannon et al., 2003), identifies clusters by finding regions of significant local density. MCL is a fast and scalable unsupervised clustering algorithm for graphs based on simulation of the flow in the graph (Van Dongen, 2000). Because MCL is a robust state-of-the-art general purpose clustering algorithm for large graphs, it can be applied to any complex biological networks, e.g. protein functional relationship network to look for candidate cancer driver mutations and relevant functional modules they belong to (Wu et al., 2010).

[image: Network clustering]
Fig. 5.1 Network Clustering

This demonstrates the procedure of identification network clusters, organization them onto the network with distinct visual schemes, and how nodes in the same cluster are laid out coherently.

One can define resultant network clusters (or modules) as groups, therefore they, as described in Exploring network, can be visually organized and laid out onto the network with distinct visual schemes, as well as displayed in a tabular format. As shown in Fig. 5.1, each cluster and its members are visualized with a distinct color and shape according to their cluster membership, also laid out using the optimized force-directed layout algorithm that automatically attracts each member in a cluster while repelling other clusters. This helps users to visually interpret the coherence of clusters in the context of the network, that cannot be easily obtained by simply examining lists of clusters or their membership. Cluster nodes in the network can then be manipulated just like other general nodes for any exploratory purposes, e.g. one can select, then drag them in order to place in desired positions. One also can create a new visualization for a sub-network made up of nodes and edges in a cluster.

These features of network clustering and grouping in MONGKIE can facilitate to analyze or visualize the large data set of biological interactions in a more modular way that can provide biological insight into both local and also global structures in networks between biologically related nodes - e.g. a pathway affected by mutated genes, proteins belonging to a same complex or family, or cross-talk among biological pathways etc.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 5.2. Gene expression overlay

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	5. Network Analysis

5.2. Gene expression overlay

Gene expression data obtained by micro-array experiments or RNA-seq techniques can provide powerful insights into underlying cellular states and dynamics when they are well integrated into the context of biological networks. Therefore, overlaying expression profile data onto a visualized network is an essential way in identifying a set of genes or proteins that share a related pattern of expression under a particular condition - eg. co-regulated gene sets and their interactions in a certain disease sample - or capture dynamic changes of their expression levels over a range of time points or different conditions (Gehlenborg et al., 2010). For these analyses, we require tools that allow users to visually represent expression profiles of the nodes in the network according to their expression level, thus better perceive the dynamic mechanism of a underlying biological system being guided by visualized expression patterns or changes.

MONGKIE provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the gene expression data analysis of time series or multiple conditions. It supports dynamic visual representations, including a color gradient, size, and label of relevant nodes, that are easy to separate and interpret independently in order to depict the corresponding expression profile ratio of gene or protein nodes. Once expression profiles are imported as data attributes of nodes using the CSV file format, then a heat map visualization, which is used in a wide range of tools for the process of gene expression visualization (Gehlenborg et al., 2010) appears to display those expression data as a ratio-based graphical matrix, as well as incorporated within the graphical representation of nodes in the network (see Fig. 5.2).

An important challenge for expression data analysis is to interpret gene expression data produced from more than one condition, for example, time series experiments, or multiple perturbation studies. Therefore, it is necessary to consider all time points or conditions in order to detect temporal patterns and their changes in gene expression profiles whose values vary over time or different condition. This requires a selective or sequential visualization of multiple expression levels in the network context. MONGKIE allows users to incorporate such dynamics of gene expression profiles into the loaded network visualization by offering a way to change the visual mapping - e.g. color, size - of nodes to reflect the expression levels of a particular time point or condition according to the user selection.

[image: Expression overlay]
Fig. 5.2 Overlaying of multiple expression profiles

This demonstrates the procedure of overlaying of gene expression data from multiple experiments onto genes in the network, and the UI for capturing dynamic changes of their expression levels over a range of different experiments.

Fig. 5.2 illustrates an example of this process, where gene expression profiles from multiple micro-array experiments in six cell lines were loaded into the heat map display, and also mapped on corresponding nodes in the network. A expression level of a particular experiment can be navigated using a sliding bar UI on the bottom of the window, and also the navigation process can be animated, as introduced in some tools (Hu et al., 2013 and Kincaid et al., 2008), by automatically switch to visualization of the next experiment with a predefined time interval. This is well suited to investigating by eye changes of expression levels within a group of interesting genes - e.g. genes that share a same functional term, members of a network cluster, or deferentially expressed genes - over given experiments. Furthermore, by arranging visualization windows in a grid (see User Interface), one can in parallel compare multiple visualizations of the same network, where each visualizes for its navigating experiment - known as the ‘small multiples’ approach (Gehlenborg et al., 2010).

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 5.3. Over-representation analysis

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	5. Network Analysis

5.3. Over-representation analysis

A group of interesting genes in the biological network, e.g. a module of potentially related genes has been found by the Network clustering, may be investigated to find biological pathways or other functional categories like GO (Gene Ontology Consortium, 2004) terms, where they are significantly over-represented. This approach, so-called ‘enrichment analysis’, is widely used in order to study the gene set for their over-representation in certain annotation classes that are usually related to biological functions of those genes (Huang et al., 2009).

[image: Enrichment analysis]
Fig. 5.3 GO over-representation analysis

This demonstrates the procedure of enrichment analysis, and visual annotation of relevant nodes or regions (e.g. clusters) in the network with significantly over-represented GO terms.

MONGKIE provides a pipeline for this analysis, shown in Fig. 5.3, where researchers perform a statistical test for enrichment or depletion using the GO categories, in order to identify over-represented functional terms with statistically significance from the selected set of interesting genes in the certain network region. The result of analysis is displayed in table views with both a list of resultant functional terms and also statistics of the enrichment analysis, including number of enriched terms, number of population genes, number of query genes, and detailed information about each annotation term. In the result table, each row of resultant term has a background color that is mapped to its corresponding p-value - that was calculated using the hyper-geometric testing, and might be adjusted by one of following multiple testing correction methods: Bonferroni, Bonferroni-Holm, Benjamini-Hochberg, or Benjamini-Yekutieli - and the set of resultant term can be reduced based on user’s cut-offs and ranked by their statistical p-values.

Another optimized way to show the result of enriched functional terms in the hierarchical structure, e.g. Gene Ontology, is to display them in a tree table. In the tree table view, intermediate terms for tree hierarchy are automatically included, and users can expand or collapse any sub-tree in the view. Therefore it allows the user to interactively investigate terms according to specific biological complexity within the hierarchical structure as well as their significance.

Once a list of resultant term is displayed in a tabular format, users can select significant terms of interest, then visualize the group of relevant nodes or regions annotated with those terms in the network context by mapping distinguishable visual aspects to them. This visual mapping of functional terms in the context of the network has the distinct advantage of allowing the user to quickly identify by eye both biological functions of certain parts and also higher-order interactions between those parts in the network that would not be obvious without this type of visual representation.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 6. Interaction Sources

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

6. Interaction Sources

Systems biology aims to study the relationships between molecular or functional components to gain insights into the underlying complexity and dynamics of biological processes from the properties or structure of the interactions (Kitano et al., 2002). This generally requires interaction data from diverse sources - e.g. protein-protein interactions, signaling or metabolic pathways - to be integrated, and analyzed together with data derived from high-throughput experiments, such as genomics, transcriptomics, and proteomics. One example of this integrative approach is to analyze altered genes in specific disease samples on the context of biological networks. By projecting the list of mutated, amplified, or deleted genes onto biological networks, one will find statistically significant subsets of related genes that are closely clustered as network modules or biological pathways affected by such genes.

Network-based multi-omics analyses can thus provide important insights into complex biological mechanisms and processes - e.g. the biology underlying disease etiology, or progression of several cancer types (Jones et al., 2008) - and reliable pathway databases as well as high-coverage protein interaction dataset are essential for such an analysis. MONGKIE is integrated with hiPathDB (Yu et al., 2012) which is the Human Integrated Pathway Database described below. Furthermore, it provides an interaction manager that allows users to incorporate external interaction data from multiple sources into the process of network analysis and visualization, and to manage them through an integrated UI.

Table of Contents

	6.1. hiPathDB

	6.2. Interaction Manager

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 6.1. hiPathDB

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	6. Interaction Sources

6.1. hiPathDB

With heterogeneous biological pathway data sets in the diversity of potential data formats available, the integration of pathway resources has become an important issue in utilizing these resources systematically and efficiently. In order to utilize these resources to interpret and analyze genomic data using network-based analysis methods, the information stored in dispersed data repositories needs to be linked and combined in efficient ways, and strongly required to unify heterogeneous interactions in different pathway data sources into the one general network model.

Here, MONGKIE provides a built-in software module for highly interactive pathway visualization and exploration, tightly integrated with hiPathDB (Yu et al., 2012). hiPathDB is an integrated pathway database that combines curated human pathway databases of NCI-Nature PID (Schaefer et al., 2009), Reactome (Croft et al., 2010), BioCarta (Nishimura, 2001) and KEGG (Kanehisa and Goto, 2000). hiPathDB provides two different types of integration. One is the pathway-level integration - shown in Figure 3 of Yu et al., 2012 - which is conceptually a simple collection of individual pathways, was achieved by devising an elaborate model that takes distinct features of four databases into account, and subsequently reformatting all pathways in accordance with our model - shown in Figure 2 of Yu et al., 2012 - while maintaining molecular details of signaling processes. Another is the entity-level integration - shown in Figure 4 of Yu et al., 2012 - creates a single unified pathway, super-pathway, that encompasses all pathways by merging common components. Even though the detailed molecular-level information such as complex formation or post-translational modifications tends to be lost in the entity-level integration, such integration makes it possible to investigate signaling network over the entire pathways and allows identification of pathway cross-talks. Therefore, the unified super-pathway achieved by entity level integration facilitates the network-based analysis and navigation from the perspective of biological pathways.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 6.2. Interaction Manager

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	6. Interaction Sources

6.2. Interaction Manager

In addition to biological pathways, there are other types of biological interactions that are well modeled by simple binary, pair-wise graphs, such as PPIs, TF-target, miRNA-target and genetic interactions, and they are also essential for the network analysis of genomic data. MONGKIE provides a elegant way to use these types of network as background networks for the exploratory network-based analysis and visualization, through the Interaction Manager UI, shown in Fig. 6.1 A.

[image: Interaction Manager]
Fig. 6.1 Interaction Manager

(A) Interaction Manager UI. (B) demonstrates the procedure of dynamic network construction starting with a small part of genes of interest (orange nodes).

Imported and managed interaction data sources can be utilized for various exploratory and analytical purposes, such as network generation from a scratch by search query, dynamic network exploration, expansion and filtering of interactions by their sources. For example, there are cases when the size of a interaction network is so huge that it is impossible to handle and visualize the complete network at once. It is recommended for such situations to follow the approach of a classical top-down exploration, in which rather than display the entire network in one display, initially start with a small part of nodes in the network, e.g. deferentially expressed genes, and then iteratively build a larger network by allowing the user to successively expand particular nodes of interest with their further interactions and neighbors.

The procedure for this strategy of top-down exploration provided by the Interaction Manager is shown in Fig. 6.1 B. It allows the user to expand interactions through the context-sensitive right-click menus on a selected nodes of interest (orange nodes), as well as just to connect existing nodes using the interaction dataset from a data source by selecting the check-box of that source in the interaction manager UI. Later, the user may delete neighbors out of the interest to reduce complexities of the network such that he/she focuses on the region of interest. Furthermore, each newly added node resulting from a expansion action is placed in an appropriate position with an animation, well incorporated into the force-directed layout algorithm (Frick et al., 1999, Heer et al., 2005), and this allows the user to easily preserve the so-called mental map (Misue et al., 1995) during exploration of the network.

Users can import their own binary interaction dataset into the interaction manager from files using standard formats - e.g. GraphML and CSV files. Additionally, visual styles of each interaction source can be fully customized through the Visual Style editor, and they will be persisted, the latter means that customized visual properties of edges from the interaction source as well as imported interaction dataset themselves is locally stored and will be available for styling edges on the next run of the application.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 7. User Interface

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

7. User Interface

Fig. 7.1 illustrates the main graphical user interface of MONGKIE. The main application window is made up of several dynamic views using the NetBeans [http://netbeans.org] window system that lets the user maximize and minimize, dock and undock, auto-hide and sliding, and drag-and-drop windows for well organizing views inside the main window.

[image: User Interface]
Fig. 7.1 Graphical User Interface of MONGKIE

The Graphical User Interface (GUI) consist of a main visualization display with other windows, including analysis windows (network clustering, expression overlay, and enrichment analysis), visual editor, data-to-visual mapping window, data tables, statistics view, and an overview window.

The network visualization window is placed in the center with many context-sensitive menu items which allow users to easily communicate with other windows in an interactive way, access to currently important functionalities. Views in the left side of the main window includes GUIs for those functionalities that require user’s input or control actions, such as visual editor, data-to-visual mapping, network clustering, enrichment analysis, and graph layout. Those in the right side display a variety of contextual informations, including overview of the complete network, properties of selected nodes or edges, heat map visualization for gene expression data, and graphical charts that show various statistics in the visualization - e.g. groups or clusters in the network, node visibility after filtering etc. Those views that need to be organized in a tabular format together with search and filtering functionalities, such as the list of nodes or edges in the network, the result of enrichment analysis, are placed in the bottom of the main window.

While other views exists only once, the network visualization window can have multiple instances for different visualizations. This allows users to in parallel compare any number of visualized networks from different conditions, e.g. gene expression levels from multiple experiments (See Gene expression overlay), by tiling multiple visualization windows of the same network in a grid, where each one visualizes the information for its own condition.

Settings of the windows in the application, such as the size, position, and arrangement, are fully customizable by resizing or drag-and-drop. The flexibility of window management facilitates coherently working with multiple windows or views for the process of network visualization, navigation, or analysis. Also, these window settings are persisted across restart of the application, and later one can restore them to default settings.

Many parts of UI components and UX (User eXperiences) in MONGKIE are strongly inspired by Gephi [http://gephi.org] (Bastian et al., 2009). We also use the Prefuse (Heer et al., 2005) java library for the graph data structure and interactive visualization.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 8. Import and Export

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

8. Import and Export

Interaction data sets can be loaded and stored using different file formats, including GraphML [http://graphml.graphdrawing.org] (Graph Markup Language) and CSV (Comma-Separated Values). GraphML (Graph Markup Language) is a comprehensive and easy-to-use file format for graphs. Its main features include supports of storing directed or undirected or mixed graphs, hyper-graphs, hierarchical graphs, graphical representations, references to external data, and application-specific attributes. CSV (Comma-Separated Values) stores tabular data sets in a plain-text form, and is a basic file format that is widely supported by a wide range of scientific applications for loading or saving their data sets.

MONGKIE comes with built-in parsers for those files to read a graph or attributes of its nodes and edges from the given data file. GraphML file fully stores the structural information of a graph, hence it is quite straightforward to import a graph using that. CSV file, however, requires some extra steps to import a graph. As a first step, one need to prepare two files - one containing nodes and their attributes, and another containing an edge list and attributes. The CSV file containing nodes needs to include a column containing unique node IDs. The edge list CSV should include columns for source and target, containing node IDs of the start and end node for each edge. By simply going to File -> Import from CSV Files, a dialog window for importing both files will be appear, then the wizard UI will guide you to remaining steps. In following steps, one can make several modifications to properties of the importing graph - e.g. one can rename column names, specify if edges are directed or undirected, select columns of source and target for edges etc. Also, the type of each column in the node or edge table will be appropriately inferred according to the literal expression of their values - decimal data as Integer, floating points as Double, comma-separated text fields as String Array. When all steps are gone, the report dialog finally shows the summary of the imported graph, including number of nodes and edges, type of graph, issues occurred during the importing process etc. Furthermore, MONGKIE also use the CSV file as a input format in order to import expression profiles, or additional attributes of nodes or edges through the similar UI concepts applied to importing graphs.

MONGKIE is capable to export the graph in the visualization to 1) the GraphML file that contains all graph elements in one formatted file, or 2) two CSV files - each file stores the list of nodes and edges in a tabular format respectively. Exported graph serializations can be later used in not only MONGKIE itself, but also external graph visualization softwares (Shannon et al., 2003 and Bastian et al., 2009). Once satisfied with the network visualization, one can save it in one of multiple image formats - vector graphics, like SVG (Scalable Vector Graphics), EPS (Encapsulated PostScript), or bitmap images, like PNG, JPG, GIF, and BMP files.

MONGKIE also provides its own visual graph file format (VLG) that stores all visualization-wide properties - e.g. visual representations of each element, graph layout, node positions or visibilities, display scale, etc. - as well as data attributes of the whole graph in the network visualization, therefore one can save the current analysis in the VLG file, then later reopen it for continuing the analysis.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 9. Implementation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

9. Implementation

MONGKIE is a desktop application written in Java 1.6+ based on the NetBeans RCP [https://netbeans.org/features/platform/index.html] (Rich Client Platform), thus it is executable on all major operating systems such as Windows, Linux, or Mac, and provides robust ways to extend functionalities of the application with ease. In this section, we first describe the main software design and plug-in architecture focusing on its robustness and extensibility, then the multi-tiered system powered by RESTFul Web Service APIs for abstracting data and separating them from the business logics and presentation layers.

Table of Contents

	9.1. Plug-in architecture

	9.2. RESTFul Web service API

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 9.1. Plug-in architecture

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	9. Implementation

9.1. Plug-in architecture

MONGKIE is a java-based application built on top of the NetBeans Rich Client Platform [https://netbeans.org/features/platform/index.html] that supports plug-in programming architecture, thus it is easy to implement various new plug-ins with additional functionalities. An overview of its modular architecture is given in Fig. 9.1.

[image: Software architecture]
Fig. 9.1 Schematic overview of the plug-in architecture implemented in MONGKIE

Based on its extensible architecture, MONGKIE provides core APIs (Application Programming Interfaces), SPIs (Service Provider Interfaces), and UI widgets for the base functionalities, such as graph visualization, network analysis, data integration, and many out-of-the-box supports that enable to build your own plug-ins onto the platform.

For example, The software module for Graph layouts provides well-defined APIs, SPIs and UI components that can be utilized by plug-in developers (See Fig. 9.2 A). Therefore, if you want to add a new layout algorithm into the MONGKIE, you only need to implement the logic of the layout algorithm without having to worry about other things like UI components, program states, window management, event handling, and data persistence and so on. All of these fundamental features for developing plug-ins are provided out of the box. This approach can allow a great deal of flexibility in the building various improvements of existing modules as well as the introducing of new functionalities or tools.

[image: Plug-in development]
Fig. 9.2 Development and Management of Plug-ins

(A) an example of developing a layout plug-in implementing a new algorithm. (B) UI for plug-ins management.

MONGKIE also provides a GUI (Graphical User Interface) shown in Fig. 9.2 B, Plug-in Manager, in order to facilitate the management of different plug-ins. Hence, users can install, update, remove, activate, or deactivate individual plug-ins through the integrated UI, this allows the customization of the application functionalities according to their needs.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 9.2. RESTFul Web service API

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	MONGKIE 0.2.1 documentation

 	9. Implementation

9.2. RESTFul Web service API

The multi-tiered system is applied for abstracting remote data sources and separating control logics from the data and presentation layers to improve data integrity and accessibility. We put retrieval logics for the remote data at the middle-tier, which enables to control database connections and provide unified and maintainable data access. RESTFul Web Service APIs, which are at the middle-tier, are implemented using the JAX-RS [https://jax-rs-spec.java.net] technology - the Java API for RESTful (Representational State Transfer) Web Services. Based on these web APIs, MONGKIE provides the functionality that allow users to access our integrated data sources and services from outside of the platform in a programmatic fashion through any REST clients, including Java Applet, Python or Ruby scripts (See Fig. 9.1).

[image: hiPathDB 3-tiered system]
Fig. 9.3 Overview of the 3-tier system implemented in hiPathDB (Yu et al., 2012)

(1) A REST client written for pathway visualization (blue colors), (2) RESTFul Web service at the middle tier (orange colors), (3) Relational database backend.

As an example, the implementation and usage of the hiPathDB (Yu et al., 2012) RESTful Web Service API is shown in Fig. 9.3. hiPathDB APIs allow researchers to retrieve data from hiPathDB database by offering methods to get pathways given their names, or get member genes given a list of pathways, and some others.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 10. References

 Navigation

 	
 index

 	
 previous |

 	MONGKIE 0.2.1 documentation

10. References

	[Albe98]	Alberts, B. (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92.3: 291-294.

	[Bade02]	Bader, G.D., et al. (2002) Analyzing yeast protein–protein interaction data obtained from different sources. Nature biotechnology, 20.10: 991-997.

	[BaHJ09]	Bastian, M., Heymann, S., & Jacomy, M. (2009) Gephi: an open source software for exploring and manipulating networks. ICWSM, 8, 361-362.

	[BaHo03]	Bader, G.D. & Hogue, C.W. (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1), 2.

	[Bert15]	Bertrand, D., et al. (2015) Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic acids research gku1393.

	[BoKe01]	Book, G., & Keshary, N. (2001) Radial tree graph drawing algorithm for representing large hierarchies. University of Connecticut.

	[Bren13]	Brennan, C.W., et al. (2013) The somatic genomic landscape of glioblastoma. Cell, 155(2), 462-477.

	[Cera10]	Cerami, E., et al. (2010) Automated network analysis identifies core pathways in glioblastoma. PloS one, 5(2), e8918.

	[Crof10]	Croft, D., et al. (2010. Reactome: a database of reactions, pathways and biological processes. Nucleic acids research, gkq1018.

	[Enri02]	Enright, A.J., et al. (2002) An efficient algorithm for large-scale detection of protein families. Nucleic acids research, 30.7: 1575-1584.

	[Free07]	Freeman, T.C., et al. (2007) Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS computational biology, 3.10: e206.

	[Fric99]	Frick, A., et al. (1999) Simulating graphs as physical systems: a spring-embedder system for force-directed layout. Dr. Dobb’s Journal.

	[Gene04]	Gene Ontology Consortium. (2004) The Gene Ontology (GO) database and informatics resource. Nucleic acids research, 32.suppl 1: D258-D261.

	[Gehl10]	Gehlenborg, N., et al. (2010) Visualization of omics data for systems biology. Nature methods, 7, S56-S68.

	[Hart99]	Hartwell, L.H., et al. (1999) From molecular to modular cell biology. Nature, 402(6761 Suppl):C47-52.

	[Heer05]	Heer, J., et al. (2005) Prefuse: a toolkit for interactive information visualization. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 421-430). ACM.

	[Herm00]	Herman, I., et al. (2000) Graph visualization and navigation in information visualization: A survey. Visualization and Computer Graphics, IEEE Transactions on, 6(1), 24-43.

	[HuSL09]	Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids research, 37(1), 1-13.

	[HuZC13]	Hu, Z., et al. (2013) VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and therapies. Nucleic acids research, 41(W1), W225-W231.

	[Jone08]	Jones, S., et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321(5897), 1801-1806.

	[KaGo00]	Kanehisa, M., & Goto, S. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 28(1), 27-30.

	[KiKC08]	Kincaid, R., Kuchinsky, A., & Creech, M. (2008) VistaClara: an expression browser plug-in for Cytoscape. Bioinformatics, 24(18), 2112-2114.

	[Kita02]	Kitano, H. (2002) Systems biology: a brief overview. Science, 295(5560), 1662-1664.

	[Krog06]	Krogan, N.J., et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084), 637-643.

	[LeeH04]	Lee, H.K., et al. (2004) Coexpression analysis of human genes across many microarray data sets. Genome research, 14.6: 1085-1094.

	[LiDe11]	Li, B., and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics, 12(1), 323.

	[Misu95]	Misue, K., et al. (1995) Layout adjustment and the mental map. Journal of visual languages and computing, 6(2), 183-210.

	[Nish01]	Nishimura, D. (2001) BioCarta. Biotech Software & Internet Report: The Computer Software Journal for Scient, 2(3), 117-120.

	[Sara05]	Saraiya, P., et al. (2005) Visualizing biological pathways: requirements analysis, systems evaluation and research agenda. Info. Vis., 4(3), 191-205.

	[Scha09]	Schaefer, C.F., et al. (2009) PID: the Pathway Interaction Database. Nucleic Acids Res., Jan;37(Database issue):D674-9.

	[Shan03]	Shannon, P., et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research, 13.11: 2498-2504.

	[Thom91]	Thomas M.J., et al. (1991) *Graph Drawing by Force-directed Placement. Softw., Pract. Exper. 21(11):1129-1164.

	[VanD00]	Van Dongen, S.M. (2000) Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht.

	[WuFS10]	Wu, G., Feng, X., & Stein, L. (2010). Research a human functional protein interaction network and its application to cancer data analysis. Genome Biol., 11, R53.

	[YuSe12]	Yu, N., et al. (2012). hiPathDB: a human-integrated pathway database with facile visualization. Nucleic acids research, 40(D1), D797-D802.

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

 Index

 Navigation

 	
 index

 	MONGKIE 0.2.1 documentation

Index

 Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

_images/logoS_48.png

_images/data_to_visual_mapping_result.png
- ABCB1
e ne3E "
SECB1G IFNA14 v i
L APODB TGAS.
7S o coviaz
& RPSA agd e o7
|
s @ . NFY 7 9
RB1 s
TP53 & FikaRl R
e e . EGFR
cenos. PIK3CA TEKKIT
= EPKI EBP & Ve ¢
N N DGFRA P %, ™
COKNZ2A™ < o™ o
coKa - e oacadPTEN omo
o4 mee | AGAPR2 sin o
Ny hd e PESkL1
S FLG
SPTA1 wepse

_images/stop_button.png

_images/group_name_edit.png
Editor x| Visual M... | Clustering | Enrichm... | 1

v Group Properties

® Label DNA damage respons... [DNA damage response
® Color B [130260:8) Ll Cell Cycle|

o Font Droid Serif 80 Bold L.

o Text Color o s ,/

o Shape Gde — w

o Name DNA damage respons .
ember properties

® Label DA damage respons.

@ Shape .)
o sz

@ Fill Color O [201,197.172] Ll
o Border width)

@ Border Color O [255.255.255] Ll
o Font Sy Sren e 100)
@ Text Color M [50.50,50] Ll

celcee @ ==

DNA damage resp

_images/play_icon.png

_images/import_uniprot.png
Import Attributes from CSV File

To map the attributes to the network, you should properly select a key column in the
annotation file which is matched with the key attribute in the network.

Attributesfor: () Node () Edge

CsVfile toimport: | Ayjjang/NetBeansProjects/mongkie/docs/assets/symbol2uniprot all.csv

The st lne n a CSV File contains column names.

Mapping Options
Key Golumn in Annotation File:

KeyAttribute in Network:

HENCsymbol v | [hgncsymbol v

7] NEverwrite but append values to the existing data (Sl for text felds)

Preview
* Double cick o edt acolumnnane 2 Key Attrbutes nNetwork

HGNC.symbol UniProtAc I AGAP2

BTC P35070 COND1

GAST P01350 CCND2

AP psa257 canD3

up P1as23 P cokia

FKEP10 Qs6Av ks

GOLGAGLG 8MZAL COKN1A

INTSC3B 1Q969T7 (CDKN2A.

=

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

_images/import_attr_col.png
Data Table x

Nodes | |= Edges | @®Addnode [v [v E M
name |hgnc symbol | somifreq | amp.req | delfreq |Frea
9606.ENSPO0000.. MDM2 2 s o 2
9606.ENSPO00003... CDKNZA 2 0 165 167
9606.ENSPO00002... TPS3 7 s 8 ALTERED 267673124087591
9606.ENSPO00002... CDK14. 0 0 1 1 ALTERED -0544158540145985
9606.ENSPO00002... HUST 0 0 0 0 ALTERED 0.920698248175183
19606.ENSP000002.. CDKN1A o o o o LINKER 1.69954642335767

_images/edge_table_iweight.png
Data Table

o) | ®addedge [v [v I # T FAter: [seach »
(from |0 ne.. |fusi..[coo.. ho... [coe..] coe...exp-.][exp...|dat.. | dat.. text..rext..
960.. 960.. 258 114 271 82 160 &7 567 172 800 312 658 174
71 82 160 87 64 172 %00 312 301 64
271 G4 160 65 570 107 900 312 213 200
271 628 160 65 808 64 900 312 701 102 .. 033941

960.. 960.. 258 114

1

1
960.. 960.. 258 114 1
1

960.. 960.. 258 114

_images/group_name_result.png
KRAS.

PCSPDGERA

INPPSD

Muct

C16 TR 592 PTEN ™ e
CDKN2C TP53 SPTA1 4
DNA damage response .., -
CD@\'i Hust - taia AGAP ol
ell Cycle , @
mOMg feK CDK4

MDM4 uSP7.

CDKNeZ2B

s

TPT
ANK2

_images/regen_cluster_colors.png
Clusterd

Group
Ungroup

Properties E

Cluster 10

19(9.95%)
18(0.42%)
17 (8.90%)
6(G14%)
6(G14%)
5(2.62%)
5(262%)

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_images/group_icon.png

_images/invert_icon.png

_images/change_nodes_font.png
© tega_gom_edges x [(+)(=]

o 2. tnteractions

Font: Font style:

AR QBB o | pon \ ®
S ‘9D @

Search LA

Global. @ Edges | Group |

shape: Ellipse

Size:

m

Font:

=c e ———
Fill Color: [

‘ 1) Resetall node options to default ‘ ‘ o Presets.. ‘

Data Table X =
Nodes | |= Edges | @Addnode [v [l v E # T Fiter: [S=ach 2| [l colrns | v |
name |[ngne_symbol [som.freq |[amp.freq || delfreq |Freq |[Type 12

19606.ENSP00000007722 ITGA3 o o o o LINKER I

_images/mcl_network.png

_images/Glucocorticoid_receptor_regulatory_network.png

_images/change_cluster_colors.png
B custers 19 (9.95%)

B custers 18 (9.42%)

= Seturated colors @)
@1e%)
@1a%)

@62%)
@62%)
B 511,178 (3,005
B custer12 4(2.00%)

_images/plugin_development.png
@ b fun

rarsmarers B org mongio loyout impl
e dmensicns . oo

umber of cotumrs 5 B s

[+ Lovout pivins

Auto dimensions ° .
St whether o not 10 ana 'S ongle ayout pugins.cice
se et £~ B0 org monge layout plugins i

e e i et e
sl ond

? Pesess.. 9 reset 5

rvicopraviderseruice = Loyoutsuslder plugns multparste

Implement the LayoutBuilder interface
from the Layout AP] module, then register
asa Service Provider

g

Upies| i g Dowrasid] e 5| St

e o

P cangory ses
custing 51 ok dss ©
Cuong P Nt O
Conrngn Nk O
Cora 1 o

sl 1 e o
ol S °
E °
i AR St Ashs ©
meres s o s O
o a1 syt °
ot S o °
S p °
7 °
°

s o 4 oty °
G et s ©
°

°

cescn | [s | 2 pugn s

comext

Plugin Description

T ——

_images/freq_to_node_size.png
rpolat

Spie Eer
Drag ool it inth il o changeth shape ofth sline.

© Network

3

Pathway

L8

Templates

%

Continuous

Discrete

s @ ng x| Clustering

Edges | 1

<(E) 18

Layout X

_images/network_clustering.png
% Clusterizing

|@ Group All @ Ungroup All

X[® Cluster x

W custer 1
W sz
W cusers
Cusars
Cusers
Cusers
Cuser 7
Cusers
dq Gou
W Ungow
@ Randomize colors
Froperes

(@ Group All_@ Ungroup All

[ZEdior *[® Cluster x|
[mcoe v @
o b fun
W cusert satm
W cuser: saem
uster3 sasm
Custer s s s 240
Custers soas
Cusers soas 7
W cuser7 zaem
B
2w
we1%
sason
wE2%
| @ Group All_ @ Ungroup Al @ show Fie,
sassw |
s2ass1
7esm
Basew
s
92389
309
B
sasm
© Show Pie

~g= —
e ’—;
-o— g T"‘M'V
. . e
- -
»...—

Find densely connected regions
in the network

_’ L6 sig

leukemia

__PDGF Pathway
Nerve growth athway (NGF)

Inhibition of Cellulas

Fc Epsilon Receptor

Links between
BCR Sign: Pathway

_images/heatmap_menu.png
Visual Mapping
@b Clustering
 Layout

+ ipeline
Enrichment Analysis

Enrichment Result
@ Context

) Data Table

@ overview

_images/import_node_table_step.png
steps

Node table

1.
2

Node table
Edge table

] skip and continue to import edge table

Choose a CsV file to import: P

fjang/NetBeansProjects/mongkie/docs/assets/tcga gbm vertites.csv

he firstne in CSV il containscolumn names Nt

1D.column: Labglcalyrr

name ~ | hgnc_symbol v

* Doubl clck to et 2 column name

name | hgncs.. | som.freq|amp.freq [delfreq |Freq |ype | |

9606.EN...[ITGAZ |0 0 0 0 LINKER
9606EN..[IL4R |7 0 0 7 |ALTERED
9606.EN...[ITGB4__[0 0 0 0 LINKER
9606.EN...[STAG2 |12 0 2 14 |ALTERED
9606.EN...[CCND1_[0 0 0 0 LINKER
9606EN..[IFNG 0 0 0 0 LINKER

cancel

_images/gradation_points.png
Editor | Visual Mapping X | Clustering]

| Nodes | edges

log2fC

Ret: 235 |

Sl ol

e 7

el [ox]

Continuous | Discrete

_images/type_to_node_shape.png
Editor | Visual Mapping X | Clustering

3 shape
Size
Fil Color
Border Width

Border Color
Font
Text Color

119 (62.30%)
72(37.70%)
Elipse
10

0 011971721 L
20

0 255,255,251)
Sy sweten € 18 1]
W [50,50,50]

e

Layout x| 1

_images/cell_cycle_edit.png
Editor | Visual M... | Clustering | Enrichm. .
~Group properties

® Label el ycle

o Color

o Font

o Text Color

o shape

o Name
ember properties

® Label cell ycle
o shape 7

o sz

o Fil Color i

o Border width 40

@ Border Color O [255.255.255]

o Font o eten €7 18 P
@ Text Color M [50.50,50]

a

cell cycle

_images/type_to_node_shape_result.png
DOCKS

RPSA
RPLS
== TP5:
CNTNZ cpienac
= COKN2B
PDGF
VMEME CDKN 27
G CDK4 cenD!

cenpz

coknzD

MDM4 b 4

_images/export_csv_in_datatable.png
Data Table X

i= Nodes | |= Edges | @ Addnode [v [

[l
Y Fiter: [Search O [~-Al columns v‘

name |hgne symbol | som-freq amp.freq | delfreq |Freq [1ype 2
9606.ENSPO00D.. TTGA3 o o o o LINKER |
9606.ENSPO00D.. 1L4R 7 o o 7 ALTERED

9606.ENSP0000... ITGB4 0 0 0 0 LINKER

_images/expression_overlay.png
So\,’ﬂ?
WP
£ oW
fes 9

Y 1

mput | (1] [2] [4] [s 6|
Gene H1hESC_repl H1hESC_rep2HOhESC_rep] HIKESC_rep2 hNSC_repl hNSC_rep2
EEF1AL 13.79185 14.00199 13.75044 | 13.67934 13.85411 13.85411
SLC3SE2 4492365 4113211 3.059067 2.66224 2.601636 3.401862
RPS28 10.64638 10.68535 10.7573 1087831 8.943757 9.024636
1PO13 5779928 5.918798 | 5.836256 | 5.075487 6.503327 6.570179
AFAP 2614366 2524534 181933 1975451 2.194822 3.440177
GGTLAG 1471043 2.256173 | 2.096869 1.965021 1768269 2.298449
comn 8.156037 8.060218 | 8.160531 | 8.322295 7.493943 7.50963
TRPVL 1733759 1.783308 | 1.647614 | 1.963449 2597371 2.372282
(L4 8914063 8.650021 8.733601 | 8528909 7.822895 7.895255
CCNE2 1.783308 1.893221 1.520288 1.494483

L

2202786 1.658861

8 Heat Map x|(3 Context x <« vlo

sauan

N
Avigate and Uimay,
Qte.

GSE15355

Samples

Experiment 3

_images/import_csv_menu.png
File

Graph File:

> B
2 Database.. B
&5 Attributes from CSV File

_images/F1A1.png
© Network & Ppathway koblo 2 aueyzes
Edtor | Visual Ma.. [Clustering x| @ (@ 2045 x G 1G][E] fcontext [reatmep x a
ey vxo & Interactions|| X clear
> o
o D Run * o @ .o > o TCGA_GBM_EXP_SUBTYPES 6.9
-
ot o S e @ @
Cluster 2 21 (12.88%) CDKN2B
B 01 camage res. 2001227% | COKN2A <
Gusterd 1911.66%) DNA dam esponse
&8
e -
P 1700470 8 EGFR/P Ks1gna11ng ‘0‘ i
Cluster 7 6 (3.68%) > > == o
. H
Custers 5G07%) @ - .A - H
Cluster 9 5 (3.07%) *
@ Goup Al @ Ungroup Al ® 9.
oo - @ % Ay
Force Directed v .
[:] D Run
~NBodyForce ~ Condtions
Distance -1.0 (P——— Y - N S
4= Nodes | |= edges | @ Addnode [ii] + v B T Fiter P cormns | v |
eeieae ® |[Fome Jihgnc sy_J[somreq [ampireqdelfreq Jirea Jiiype J|lassical [Mesenc_|[Neural J[Pronew 2
so06E.. CEP13s 1 n e e TR e rae L 1e ||
= oe06E. POGRA 11 3 0 48 ATERED 10755 10375. 10326 12515
PR s606e.. K0 6 o 46 ATERED 12048 11793 12262 13897
Classical Mesenchymal Neural Proneural

_images/list_icon.png

_images/heatmap_import.png
New Folder | Delete File || Rename File

/home/yjjang/NetBeansProjects/mongkie/docs/assets | v

|Folders] [pies]
7 - DDR Cellcycle.csv
v EGFR PI3K.Csv

symbolauniprot all.csv
“Itcga_gbm_edges.csv

tega_gom vertices.csv

gek(ﬁnmanyﬂmunsl’mj(ﬂslmnngﬁeldn(slzssm
tega_gbm_exp_subtypes.csv

L

[CSV Files (*.csv %.6x)

ey column to map: !nuymg\ v
coumn o a v ie Wil fapped o the key coam i the netnork
line in the file contains header names

_images/visual_models.png

_images/heatmap_load.png
@ Load heatmap data...
[

Load series data from a CsV file

_images/ryb_icon.png

_images/color_icon.png

_images/pallet_icon.png

_images/visual_editors.png
Select a node to edit

Esk1 - shape

C

Libe

Edit visual properties of the selected group

e
o Fyap— Diamana
< Godutian | 20 Endos incer i
oo \ e o cross e
e G Faries
o % K sur P
T Aesein 3
S samra 'V reangie bowe o
 fromietos rraneLen e Peris
< eism D> Triane i e
* Gt Sre
= = -
vt Wi
© GrtrColor
Edit visual properties of the selected node -
Clusr 10
B Select a edge to edit
[7- Line Style
(G e G g =
e
o)
— @y
® Atrow Type L3
< Colr T
Fae St 1880
* ToxGalor Endor ncer
<o s
B3 i
® Divares oxr
* Boaniet o
a7 °

Edit visual properties of the selected edge

e u,m.m\il’w. +)(5)) [@SC et Bl on e ¥

falala}

® ee
Cluster 10
e

00

B R19,167,143)
0

B e

74

oo

Edit visual properties of member nodes in the group

_images/export_image_dialog.png
New Folder Rename File

/home/yjjang/Public/Data/Casestudy v

Folders Files
o/

v
MONGKIE/

Selection: /home/yjjang/Public/Data/Casestudy

Untitled.png

NG Images (~png

© Cancel

_images/mcl_layout.png
v NBodyForce

Gravitational Constant -10.0
Distance 10
Barnes-Hut Theta 09
Dragforce

Drag Coefficient

springForce

10005

‘Spring Length

Spring Coefficient []
‘The defautt spring co-effcient to use.

7 presets.. 9 Reset Y

_images/tp53_network_log2fc.png

_images/export_graphml_dialog.png
New Folder || Delze File | Rename File

/home/yjjang/Public/Data/Casestudy v

Folders Files
v

v
MONGKIE/

Selection: /home/yjjang/Public/Data/Casestudy

Untiled.graphml

raphML Files (%.grzphm))

© Cancel

Options,

Full The complate graph s exportad

O Selection oy Subraraph of only the currnt selected nodes s xperted

_images/info_icon.png

_images/display_options_group.png
Search LA

WH"‘“’“HE"E“‘(‘“""

Renderer ype.

@ arde
) Convex hull of the lines.
) Convex hull of the curve

O Rectangle

_images/mcl_grouping.png
Editor | Visual Mapping | Clustering X

=
ma v
o D Run
W custern 23(12.04%)

W custer2 21 (10.99%)

B cuseer 20 (10.47%)

B custers 19 (9.95%)

W cuseers i)

B custers)

B Cuser? Ungroup)

B users @ Randomize colors)

B Custers Properties)

B custerio 5(262%)

B cusernt 4(2.00%)

W custern2 4(2.00%)

W cuseers 30157%)

W custer14 3(1.57%)
@ Group All () Ungroup All

_images/GBM_altered_network.png

_images/run_button.png

_images/import_edge_table_step.png
steps Edge table

1. Node table

2. Edge table ["] Skip importing edge table

Choose a CsV file to import: 7~

eyjjang/NetBeansProjects/mongkie/docs/assets/tcga. gbm_edges.csv.

The frstline i 3 SV i contains coam names Nt

e column: column: Label column:
from v o v | |—NoLABEL v

* Doubl clck to et 2 column name

fr..|to |[n..][n.
96../96..258 114
96..{96../258 114
96..{96../258 114
96..{96../258 114
96..{96../258 114
96..J96..258 114

(8 g P o |
[271[852[160[87_[567 [172[800 [312[658[174[972]....
271[852[160 87 _[564172]900312[301]64 [928]0....
[271[624[160[65_[570]107]900[312[213[200[9170....
271[628[160 (65 [808[64 200 [312[701[102[994]0....
271[627[160[65_[570]14]200 [312[213[181[9170....
271[s67[160]65 808]149]200 [312[486 [221[946 ...

<Back

_images/enrich_analysis_result.png
Term Information

Name: cell cycle checkpoint

Description:

Ia cell cycle process that controls cell cycle progression by
monitoring the integrity of specific cell cycle events. A cell cycle
checkpoint begins with detection of deficiencies or defects and
ends with signal transduction.

Enriched gene IDs:
P04637, 38936, P06400, P42772, 060921, QU09ST, PAZTT1,

P24385
DataTable | Enrithment x
© e Q
Goid branch Gona coverage (17/45743) ratio raw-p adjusted-p

Table view | TreeTable view

search.html

 Navigation

 		
 index

 		MONGKIE 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Yeongjun Jang.
 Created using Sphinx 1.3.4.

_images/mcl_clustering.png
Visual Mapping

Clustering X o

L

Cluster1
Cluster2
Cluster3
Custera
Clusters
Custers
Custer7
Clusters
Clusters
Custer10
Custer11
Custer12
Custer13
Custer 14
Group Al

Ungroup All

]

23 (12.04%)
21 (10.99%)
20(10.47%)
19 (9.95%)

18 (2.42%)

17 (8.90%)

6(3:14%)
6(3:14%)
5 (2.62%)
5 (2.62%)
42.00%)
42.00%)
301.57%)
301.57%)

_images/arrowup_icon.png

_images/CellCycle.png
coK14

ccNp3

e

EIFac3

C A
iz COKN2B
s R

uspP7

Edtor | Visual Mapping x| Clustering a

Nodes| Edges oA K
I —
& o
color
Range |
Spline... D Apply.

| essorsasessa0na7 conpz

%

Continuous | Discrete

_images/data_to_visual_mapping.png
E Data to Color T N

= : . St ol o mp s vl @ @y D

i / . &

=_‘;_-0: 02 si
[

sccordin o ths ol vl

P

_images/import_result.png
@
©
° @
® e e
® e 2
e & ® e e e
® & .
o ©
-

_images/new_graph_egfr.png
4

_images/export_csv_dialog.png
Export Settings
New Folder Rename File

Selectataple to export:

/home/yjjang/Public/Data/Casestudy v 5 nosd O eaze

[Folders s, Pintfable headers

7

" [Exportinternal columns
MONGKIE/

Selection: /home/yjjang/Public/Data/Casestudy

Untitled.csv

e
{CSV Files [*.csv *.6xt) v

© Cancel

(@) Full - The complee arsph i exported

O Sellction only Sub-araph of orlythe current selected nodes s xperted

_images/new_graph_tp53.png

_images/kinase_binding_edit.png
CEditor x| Visual M... | Clustering | Enrichm...

~ Group Properties
@ Label
o Color
o Font
o Text Color
o Shape
o Name
~ Member properties
@ Label
o Shape
size
Fill Color
Sorder width
Sorder Color
Font
Text Color

kinase binding

O 1255,255.0]
Droid Serifg0 Bold
@ Orange

kinase binding

null
40

O 1255.255.2551]

W [50.50.50]

o

kinase binding

_images/GO_kinase_binding.png
CDKNEl;B.

g

[[[[[
EEEEEE

G

_images/freq_to_node_size_result.png
DOCKS

RPSA
RPLS
== TP5:
CNTNZ cpienac
= COKN2B
PDGF
VMEME CDKN 27
& CDK4 cenp:

cenp2

COKNZ2D

MDM4 usP7

_images/multi-tiers.png
pathway_id.php -
KOPath pathway page

1: runApplet(dbid, pathwayid)

&r

2 Iniialze Ul and start
3. executen

Connection pooling and management

4: dolnBackground)
5. geIGraphML(dbld, pathwayld)
5.1 selecPathway(dbld, pathwayld)

Query database

5.2: Pathway result from Daabase

6: application/xmi

7: doned) - create the graphig)

8. reseiGraphig)

9: Visualization rerun()

_images/enrich_analysis_run.png

_images/arrowdown_icon.png

_images/import_attr_dialog.png
Import Attributes from CSV File &

To map the attributes to the network, you should properly select a key column in the
annotation file which is matched with the key attribute in the network.

attributes for: () Node O Edge

1
CsVfile toimport: _ jjang/NeteansProjects/mongkie/docs/assets/tcga_gbm_exp_log2fe.csu|

The frstne n 2 CSV Fle contains column names 2
Mapping Options. 3
KeyColymn in Annotation F

Key Attribute in Network:

Gene.symbol v hgnc_symbol v
.4 — N #5 —
[1'NBt overwrite but append values to the existing data (GF#/for text fields)
Preview

* Double cick o edt acolumnnane 2 Key Attrbutes nNetwork
Gene.Symbol log2FC. I AGAP2
ARHGEF10L 0.427992846715329 (COND1
HIF3A -0.50906686 1313869 CCND2
RNF17 F0.460275474452555 canD3
RNF10 0.355330510948905 P cokia
RNF11 F1.00248423357664 ks
RNF13 0447161751824817 COKN1A
Gre2mp1 0.164177372262774 CoKN2A

6

=

_images/enrich_analysis_win.png
Visual Mapping
@b Clustering

i Layout

B HeatMap

& Pipeline

Enrichment Result
@ context
(/) Data Table

@ overview

_images/cell_cycle_tree.png
Data Table | Enrichment X
v > 0

Goid branch GO name coverage (17/45743) [ratio raw-p adjusted-p

© GO:00447...bp single-organism cellular process [17(0)/21937(0)] 7.74956-04 37419606 4.9206E-03

© GO:000...bp cellaging [3(1)/10540)1 28571602 7806406 1.02656-02

G0:005...bp cell division [6(5)/10420107)] 5.7582E-03 13748E-06 1.8079E-03

© GO:002..bp cell cycle process [13(0)/ 1658()1 7.84086-03 37001616 4.8656E-13

~ GO:000...bp cell death [9(0)/2767(229)] 3.2526E-03 1.6678E-07 2.1932E-04

- GO:001..bp
Table view | TreeTable view

cell ycle
cell growth [5(0)/564(78)1 8.86526-03

1.5326-06

2.0154E-03

[E:1({impy}

_images/F1A_whole_network.png
® . °-

o |‘ ,.

CDKN2B
CDKN2A A
DNA dam g sponse ,.
EGFR/P K SIgnalmg =5

_images/import_attr_menu.png
Graph Fils...

Export > 1 Comma-Separated Values (CSV)

£ Database...

=

T

_images/log2fc_to_color.png
Editor | Visual Mapping X | Clustering

Continuous

@)

Discrete

2

Recently Us

Invert

D Apply

d

>

4TI

_images/interaction_manager.png
<)

2. tnteractions

MM Key:[GenelD [v B R
~ Pathway
hiPathDB Key: [MM_Geneld | v| Bv &
~ Others
[N
» Checkall.. » Uncheck all

r © mporca interacrion dat s
—

© Then,add icinto the
ersction mansger

s .
@ - @ - o5 ® 3 T
¥ L e
@

© Query frther ineracions of sodes
from theineraction sources

_images/size_icon.png

_images/clear_icon.png
K Clear

_images/EGFR.png
Edtor [Visual Mapping x| Clustering a

Nodes| Edges

logaFC. v

color

gy |

Spe. > Apely SPTA1

HRAS

LAsIG2TTSI26 1199
gkt RS

o3I P0GHA

os0saaeez5357604 PTAT

GserrsaTias PIK3R1 Y S
oastiaus2 eI PIGCh

00962182481751821)AK 1
0.06381182481