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MONGKIE Supplementary, Release 0.2.1

MONGKIE is a software platform for interactive visualization and analysis of complex omics data in the context of
biological networks.

• All components for visualization (e.g. Data-to-Visual mapping and Gene expression overlay), network analysis
of defining subgroups, and functional interpretation of network modules can be easily threaded into a pipeline
that allows user interaction at each step.

• It was built on top of the Plug-in architecture to support application extension by third-party developers.

Important: In the Case Study, we demonstrate how MONGKIE can be used to identify driver gene candidates and
core regulatory modules in the study of TCGA Glioblastoma Multiforme (Brennan et al., 2013).

Table of Contents 1
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CHAPTER 1

Installation

This section describes how to install and run MONGKIE. Installation instructions are provided for Linux , Mac OS
X, and Windows.

Caution: If you have an older version on your computer, you should uninstall it and remove the User Directories.

1.1 System Requirements

1.1.1 Recommended hardware requirements

OS Processor Memory Disk space
Linux Intel Core i5 or equivalent 2GB (32-bit), 4GB (64-bit) 1.5GB of free disk space
Windows Intel Core i5 or equivalent 2GB (32-bit), 4GB (64-bit) 1.5GB of free disk space
OS X Dual-Core Intel 4GB 1.5GB of free disk space

1.1.2 Java

MONGKIE is written in Java, and runs on the Java Runtime Environment. Therefore, the Java runtime (7 or 8) is
required to install and run it. You can download the latest version of Java runtime from here for Windows and Linux,
and OS X Lion (10.7), Mountain Lion (10.8), or Mavericks (10.9).

The tested Java versions are Java 8 and 7u67 for Windows, Linux, and OS X.

Caution: MONGKIE cannot be installed or run using Java 6.0, and OpenJDK is not supported, be sure to run the
official Java version from Oracle’s website.

1.2 ZIP Distributions

1. Download the latest release of a ZIP distribution for your OS.

2. Unzip it to any directory on your system.

3. Run the executable file located in the bin directory

• On Linux, mongkie/bin/mongkie

• On Windows, mongkie\bin\mongkie.exe

3
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• On OS X, mongkie.app/Contents/MacOS/mongkie

1.3 Installable Packages

Download the latest release of an installer for your OS.

1.3.1 Linux and Windows

1. After the download completes, run the installer.

• For Windows, the installer file has the .exe extension. Double-click the file to run it.

• For Linux, the installer file has the .sh extension. You need to make the installer executable by using the
following command: chmod +x <installer-file>. Type ./<installer-file> to start the
installation wizard.

2. Follow steps in the installation wizard.

1.3.2 OS X

1. After the download completes, click on the downloaded .dmg file.

2. Drag the mongkie application in your Application folder.

1.4 User Directories

userdir is the directory where MONGKIE stores user configuration data such as window layouts, and various
application options. Sometimes your userdir can be corrupted and this results in the MONGKIE behaving weirdly.

To fix such issues, delete userdir entirely, then restart MONGKIE, and allow it to generate a new userdir from
scratch. In most cases, this should repair the problems.

userdir is located in:

• On Windows 2K/XP, C:\Documents and Settings\<username>\Application
Data\.mongkie

• On Windows Vista or later, C:\Users<username>\AppData\Roaming\.mongkie

• On OS X, /Users/<username>/Library/Application Support/mongkie

• On Linux, /home/<username>/.mongkie

4 Chapter 1. Installation
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CHAPTER 2

Tutorial

This chapter provides step-by-step tutorials for the Case Study and more.

Note: Input data files to be imported into the MONGKIE in this tutorial were generated by the
extractAlteredNet_GBM.R. Refer to Case Study for details about the method. Briefly, starting with somatic
mutations, CNAs, and gene expression data sets downloaded from UCSC Cancer Browser, the R script does the
following tasks.

• Calculate expression log2FCs of each gene in normal vs. tumor conditions.

• Calculate expression means of each gene in 4 GBM subtypes.

• Extract a sub-network of altered (somatic mutation or CNV) genes in STRING.

• Calculate expression correlations between each pair of genes in the extracted network.

• Write vertices, edges, and expression related data files.

You can download the R script and generated input files in supplementary_data.zip.

2.1 Import a GBM-altered network

You will import a GBM-altered network from 2 CSV files for nodes and edges,

• Select File → Import → Comma-Separated Values (CSV), now a wizard window will guide you to remaining
steps.

• Choose tcga_gbm_vertices.csv, and set ID column to name, Label column to hgnc_symbol, then
click the Next button.

5
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• Choose tcga_gbm_edges.csv, and set Source column to from, Target column to to, then click the
Finish button.

6 Chapter 2. Tutorial
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• A report dialog finally shows the summary of the imported graph, including number of nodes and edges, type
of graph, issues occurred during the importing process etc. Click the OK button.

2.1. Import a GBM-altered network 7
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• The imported network looks like below:

8 Chapter 2. Tutorial
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2.2 Data-to-Visual mapping

Data-to-Visual mapping allows you to map data attributes of nodes or edges to various visual styles.

• (Optional) Before proceeding to further steps, change the default font for nodes to Sony Sketch EF that was
used in figures in the Case Study.

Note: To use the Sony Sketch EF font, you should download and install it on your system. It is available
at here.

– To open the Display Options panel, click the button at the bottom-right of a network display window.

2.2. Data-to-Visual mapping 9
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– Select the Nodes tab, and click the Font name button, and choose a font name, style, and size, then click
the OK button.

– To close the Display Options panel, click the button at the top-right of the panel.

• To map the alteration frequencies of genes to the sizes of nodes,

1. Select the Visual Mapping window at the top-left of main application.

2. Select the Nodes tab button.

3. Select the icon.

4. In the drop-down list, choose the Freq data attribute to map.

5. Click the Spline... button to open the Spline Editor.

6. Choose a pre-defined scale function.

7. Adjust the transform scale to make more frequently altered genes be magnified.

8. Close the Spline Editor.

9. Click the Apply button.

10 Chapter 2. Tutorial
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• Now the network looks like the following:

2.2. Data-to-Visual mapping 11



MONGKIE Supplementary, Release 0.2.1

• Now you will map a different shape to the LINKER (Not altered genes but extracted guilt-by-association) nodes
using discrete Data-to-Visual mapping.

1. Select the Discrete tab at the bottom of Visual Mapping window.

2. In the drop-down list, choose the Type data attribute of Nodes to map.

3. Expand the LINKER, now various editors for visual styles will be shown.

4. In the Shape filed, click the ... button to show up the node shape chooser.

5. Choose the Diamond shape, and click the OK button.

12 Chapter 2. Tutorial
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• Now the network looks like the following:

2.2. Data-to-Visual mapping 13
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• You can map EXPRESSION CORRELATIONS (Correlations of expression levels between each pair of genes in
tumor conditions) to the thicknesses of edges.

1. Select the Continuous tab at the bottom of Visual Mapping window.

2. Select the Edges tab button.

3. Select the icon.

4. In the drop-down list, choose the i.weight data attribute to map.

5. Set the Max value to 10.

6. Click the Spline... button to open the Spline Editor.

7. Restore the scale function to the linear function.

8. Click the Apply button.

14 Chapter 2. Tutorial
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• The final network is shown below:

2.2. Data-to-Visual mapping 15
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2.3 Network clustering

You imported the GBM-altered network into MONGKIE, now you will apply the MCL Network clustering algorithm
to identify network modules representing genes with topological proximity and correlated expression.

Hint: In the EDGE TABLE (Located in the Data Table window at the bottom of main application), you can see that
the i.weight column contains expression correlations.

MONGKIE internally assigns the values of i.weight column in a edge table to the weights of edges for clustering.
Therfore, to give weights to edges in your network, you should set the name of the column to i.weight.

• In the Clustering window at the top-left of main application

1. Choose the MCL algorithm in the drop-down list.

2. Click the button to start the algorithm.

3. After a little, the identified clusters will be listed.

16 Chapter 2. Tutorial
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• You can define these clusters as group nodes on the network.

1. Select top 5 largest clusters by clicking Cluster 1 and Cluster 5 holding down the Shift key.

2. Right-click on the selection will show up a pop-up menu. Click the Group menu item.

2.3. Network clustering 17
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• Now you see that group nodes on the network are too large or a lot of overlapping with each other. You can use
the force-directed algorithm to lay out them with more optimized size and position.

1. In the Layout window at the bottom-left of main application, choose the Force Directed algorithm.

2. Click the bottom to start the algorithm.

3. Set Spring Coefficient to the minimu value 4.0E-5 by dragging the slider tick to the left-most.

4. When being satisfied with the result, you can stop the running of algorithm by clicking the

button.

18 Chapter 2. Tutorial
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• The final network looks like the following:

2.3. Network clustering 19
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Tip: How to change default shape of group nodes on the network.

In the Display Options panel, you can globally set various visualization options for nodes, edges, and groups:

1. To open the Display Options panel, click the button at the bottom-right of a network window.

2. Select the Group tab.

3. Choose one of listed shapes.

For editing a individual component, you can use the Visual Editor UI.

Tip: How to change colors of cluster in the Clustering window.

Initially the colors of cluster are assigned randomly. You can regenerate random colors for all clusters:

20 Chapter 2. Tutorial
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Or, you can manually set the color of individual cluster:

1. Press and keep holding down the mouse left-button on the color box on the left of a cluster name.

2. While holding the mouse button down, move the pointer in the color panel.

• Press ALT key down to show constant colors.

• Press SHIFT key down to show desaturated colors.

• Press both CTRL and ALT keys down to show recent colors.

3. When you release the mouse button, a color under the pointer is set to the cluster’s color.

Of course, you can use the Visual Editor UI for changing the color of group node.

Tip: By double-clicking the name of a cluster listed in the Clustering window, you can edit name of the cluster.

2.4 Make a new network from a cluster

In this section, you will create new networks from previously identified clusters. A new network consists of nodes and
edges only in the cluster it derived from.

2.4. Make a new network from a cluster 21
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• Right-click on the group node for cluster 5 on the network, then a pop-up menu for the group node will be
shown up.

• Click the New Graph menu item. You will see a new network created in a new tab.

• Repeat above steps on the cluster 3. Two networks derived from Cluster 5 and Cluster 3 are shown
below:

22 Chapter 2. Tutorial
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2.4. Make a new network from a cluster 23
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2.5 Import expression log2FCs in normal vs. tumor

You will import gene expression log2FCs between normal vs. tumor condition in all TCGA GBM patients. and map
them to the colors of nodes.

• Select the Network tab of previously created network from Cluster 3 in the original network.

24 Chapter 2. Tutorial
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• Select File → Import → Attributes from CSV File.

• In the Import Attributes dialog,

1. Be sure Attributes for: Node to be checked.

2. Choose a CSV file to import: tcga_gbm_exp_log2fc.csv

3. Check The first line in a CSV file contains column names

4. Key Column in Annotation File: Gene_Symbol

2.5. Import expression log2FCs in normal vs. tumor 25



MONGKIE Supplementary, Release 0.2.1

5. Key Attribute in Network: hgnc_symbol

6. Click the OK button.

• Now you can see a newly added column log2FC in the node table as shown in below:

• In the Visual Mapping (Nodes) window,

1. Click icon.

2. Choose log2FC in the drop-down list.

3. Click to show up a palette chooser.

26 Chapter 2. Tutorial
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4. Select (Red-Yellow-Blue).

5. Click to map Red to the maximum and Blue to the minimum value.

6. Check to show a list of node names with their mapped colors ranked by values.

7. Click the Apply button.

• The final network of Cluster 3 is shown below:

2.5. Import expression log2FCs in normal vs. tumor 27
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• Repeat above steps on the network of Cluster 5.

Tip: How to add more gradation points and colors.

• You can add any number of gradation points by clicking desired positions on the color bar.

• Once you have a gradation point, you can edit its color by double-clicking the point.

• You can also move the points by dragging them.

28 Chapter 2. Tutorial
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2.6 Functional annotation of a cluster

In this section, you will perform a GO Over-representation analysis for genes in Cluster 3 and visually annotate
the cluster with representative functions via the Visual Editor UI.

• Make sure you select the Network tab of Cluster 3.

2.6. Functional annotation of a cluster 29
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• Select the Window → Enrichment Analysis.

30 Chapter 2. Tutorial
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• Before going to remaining steps, you need to import symbol2uniprot_all.csv into the node table.
The reason is that our in-house GO over-representation analysis tool expects IDs of gene set to be UniProt
Accessions.

1. Select File → Import → Attributes from CSV File as described in previous section.

2. In the Import Attributes dialog,

– Choose a CSV file to import: symbol2uniprot_all.csv

– Key Column in Annotation File: HGNC.symbol

– Key Attribute in Network: hgnc_symbol

2.6. Functional annotation of a cluster 31
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• In the Enrichment Analysis window,

1. Choose Gene Ontology in the drop-down list.

2. Set Gene ID column to UniProt.Ac.

3. Set the multiple testing Correction method to Bonferroni.

4. Click the Run button.

32 Chapter 2. Tutorial
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• After a little, the result is shown in the Enrichment window at the bottom of main application.

– You can see that GO terms of cell cycle checkpoint and DNA damage checkpoint are
listed in first and second rows respectively.

– Select the cell cycle checkpoint GO term, the click icon to see the details about the term.

2.6. Functional annotation of a cluster 33
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• Next you will visually annotate the group node of Cluster 3 with two representative functions.

Caution: Now be sure to switch to the original network tab named tcga_gbm_edges.

– Click the group node of cluster 3 in the original GBM-altered network.

– In the Editor window,

– Click the ... icon in Name property to edit a group name.

– Enter DNA damage response and Cell Cycle.

– Set the Font property to Droid Serif 80 Bold or what you want. (You can open the font chooser
by clicking ... button in the Font property)

• The result is shown below:

34 Chapter 2. Tutorial
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Tip: How to define a group node that contains nodes (genes or proteins) with a same function after GO over-
representation analysis.

After GO over-representation analysis of Cluster 3:

1. Select the TreeTable view tab in the Enrichment result window.

2. Select a GO term named kinase binding at molecular_function > binding > protein
binding > enzyme binding > kinase binding.

3. Click the button.

4. After clicking the group node named kinase binding, edit its visual properties in the Editor window.

• Set Font to Droid Serif 80 Bold.

• Set Text Color to Orange.

• Set Shape to Convex hull of the lines.

2.6. Functional annotation of a cluster 35
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5. Manually adjust the positions of nodes like below:

36 Chapter 2. Tutorial
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6. Select a GO term named cell cycle at biological_process > cellular process >
single-organism cellular process > cell cycle.

7. Click the button.

8. After clicking the group node named cell cycle, edit its visual properties in the Editor window.

2.6. Functional annotation of a cluster 37
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• Set Font to Droid Serif 100 Bold.

• Set Text Color to Blue.

• Set Shape to Rectangle.

9. Now you can see that cell cycle contains all genes in kinase binding. The final result looks like
below:

38 Chapter 2. Tutorial
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2.7 Import expression profiles for 4 GBM subtypes

Now overlay average gene expressions in GBM patients of 4 subtypes onto the GBM-altered network.

• Select the original GBM-altered network tab named tcga_gbm_edges.

• Select Window → Heat Map.

2.7. Import expression profiles for 4 GBM subtypes 39
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• In the just opened Heat Map window, click the Load heatmap data... label.

• In the Import dialog,

1. Choose tcga_gbm_exp_subtypes.csv file to import.

2. Make sure that Key column to map is hgnc_symbol.

3. Be sure to check First line in the file contains header names.

4. Click the OK button.

40 Chapter 2. Tutorial
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• Now your screen looks like the following:

2.7. Import expression profiles for 4 GBM subtypes 41



MONGKIE Supplementary, Release 0.2.1

• In the bottom panel of application,

– Drag the slider tick to Mesenchymal to see average expressions in patients of mesenchymal subtype.

– You can switch subtypes automatically to see animated pictures by clicking button.

Tip: You can clear the heatmap and mapped colors in the network by clicking button in the Heat Map
window.

2.8 Save as a image, CSV files, GraphML, and a VLG (Visualized
Graph) file

• You can lauch export dialogs from File → Export → Graph Files... or Image Files....

• You can save the final visualization as one of supported image formats:

– Use SVG (Scalable Vector Graphics) or EPS (Encapsulated PostScript) for vector graphics.

– Use PNG, JPG, GIF, or BMP formats for bitmap images.

42 Chapter 2. Tutorial
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• You can export the graph to:

1. A GraphML file that contains all graph elements in one formatted file, or

2.8. Save as a image, CSV files, GraphML, and a VLG (Visualized Graph) file 43
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2. Two CSV files, each stores list of nodes and edges in a tabular format respectively.

44 Chapter 2. Tutorial
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3. A VLG (Visual Graph) file that stores all visualization-wide information as well as graph data.

2.8. Save as a image, CSV files, GraphML, and a VLG (Visualized Graph) file 45
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Tip: CSV files for nodes or edges can be exported in the Data Table window.

46 Chapter 2. Tutorial
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CHAPTER 3

Case Study

High-throughput studies of tumor biology at multiple levels, including genome, transcriptome, and proteome, have
been resulting in a greatly increased volume of cancer omics data. Given huge amount of cancer omics data, it is
a major challenge to distinguish driver mutations from passengers, and to reveal functional relationships between
them. One powerful approach to the challenge is to analyze data on the context of biological networks. For example,
integration of mutation, copy number, and gene expression profiles with a biological interaction network has been
proposed as an approach to identify functional cancer drivers, relying on the assumption that they will cluster on the
network (Bertrand et al., 2015).

In this section, we demonstrate how MONGKIE can facilitate the study of structural pattern of altered genes in the
TCGA study of Glioblastoma Multiforme (Brennan et al., 2013) on the STRING network to identify candidate driver
genes and core gene modules perturbed by them.

Note: See Tutorial for a step-by-step tutorial for this case study.

3.1 Cancer omics data

Somatic mutations, DNA copy number alterations, and RNA-seq expressions level 3 data for TCGA GBM cases were
obtained from the UCSC Cancer Browser. Downloaded files for each data type are listed in Table 3.1.

Table 3.1: TCGA GBM datasets processed by UCSC Cancer Browser

Data Type Downloaded Data File
Somatic Mutation TCGA_GBM_mutation_broad_gene-2015-02-24.tgz
Copy Number TCGA_GBM_gistic2thd-2015-02-24.tgz
RNAseq Expression TCGA_GBM_exp_HiSeqV2-2015-02-24.tgz

Based on the 273 GBM cases with both somatic mutation and copy number information, each gene was considered
altered if modified by a validated non-synonymous somatic nucleotide substitution, a homozygous deletion, or a multi-
copy amplification. These somatic SNVs, indels, and called CNAs are combined to produce the gene-by-patient matrix
M for gene alterations, where M(i;j) indicates whether the gene i is altered or not in the patient j, then an
alteration frequency score for each gene was calculated by counting the number of patients in whom the gene is altered.

For gene-level expression profiles, we produced the gene-by-patient matrix G for gene expressions, where G(i;j)
represents the expression level, which is a logarithmic scale of upper-quartile normalized RSEM (Li et al., 2011)
estimats in tumor, for the gene i in the patient j.

49
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3.2 Extraction of a GBM-altered network

We selected recurrently altered genes with somatic mutations in 6 or more patients, or CNAs in 9 or more patients
from the alterations matrix (See above section). A total of 380 genes passed the frequency threshold. For each pair of
those genes, we found all shortest paths in the STRING database (Confidence score > 900) with distance threshold 2,
resulting in 175 altered genes and 815 linkers. To retain significant linkers only (Cerami et al., 2010), we applied the
hyper-geometric distribution test for local enrichment against the global degree of each linker within the background
network (See next section for details). After Benjamini & Hochberg (aka FDR) multiple testing correction (p-value
< 0.01), we finally extracted a GBM-altered sub-network with 119 altered genes, 72 linkers, and 861
interactions between them. The visualization of the extracted network in MONGKIE is shown in Fig. 3.1.

Fig. 3.1: GBM-altered network
Altered genes represented by circles, and linkers by diamonds; alteration frequencies were mapped to node sizes.
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3.3 Statistical test for significant linkers

It is necessary to assess the probability that linker genes, which are not altered but extracted guilt by association, would
connect to the observed number of altered genes by chance alone. The simplest and most widely used statistical test
for such purpose is the hyper-geometric distribution test, where successes in sample: number of
edges connecting the linker to altered genes in the extracted network (local degree), successes in background:
global degree of the linker in the background network, population size: total number of genes in the background
network, sample size: number of altered genes in the extracted network.

3.4 Network clustering

To give weights to the extracted network, we calculated Pearson Correlation Coefficients of expression levels in the
expressions matrix (See above section) among all pair-wise interactions between genes in the extracted network, and
then assigned the PCCs to weights of edges in the network. Next, we used a highly efficient network clustering
algorithm, MCL (Van Dongen, 2000), to cluster the weighted network into a set of gene modules. The visualization of
the result is shown in Fig. 3.2. Each module consists of gene set that are both topologically close in the PPI network,
and highly correlated by expression abundance change in tumor conditions.

3.5 Results

Two of the top 5 largest gene modules that are identified by network-based multi-omics (somatic mutations, copy
number variations, and RNA expressions) analysis of TCGA GBM cases corresponded very closely to critical signaling
pathways prior known to GBM biology. First one corresponded to the components of the EGFR/PI3K signaling
pathway, including EGFR, PDGFRA, PIK3CA, and PIK3R1 (see Fig. 3.3), and second one to the components of the
DNA damage response and Cell Cyle including TP53, CDKN2A/B, CDK4, MDM2/4 and RB1 (see Fig. 3.4).
Enrichment analysis of the two modules was performed using Enrichr, and the result is shown in Table 3.2.

Table 3.2: Gene list in 2 critical modules and their functional annotations in WikiPathways 2015

Module Gene List Functional Annotation
DNA damage response and Cell Cyle DDR_CellCycle.csv DDR_CellCycle_WikiPathways.tsv
EGFR/PI3K signaling EGFR_PI3K.csv EGFR_PI3K_WikiPathways.tsv

In summary, we performed an integrated network analysis of multi-omics data to identify core network modules in the
TCGA study of Glioblastoma Mutiforme, and the result revealed that our tool can be used to automatically identify
cancer driver genes and core gene modules sharing structural pattern with those genes in a STRING network, thus to
capture critical pathways that play important roles in tumor genesis.
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Fig. 3.2: Core gene modules in the GBM-altered network
Gene alteration frequencies in all GBM cases were mapped to node sizes; mean expression levels of each gene over cases of the

Mesenchymal subtype were mapped to node colors; expression correlations in tumor cases were mapped to edge thicknesses. Two
critical modules (See Results) are represented by different colors (one is blue, another is red; the others are gray)
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Fig. 3.3: EGFR/PI3K signaling
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Fig. 3.4: DNA damage response and Cell Cycle
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CHAPTER 4

Network Visualization

Like other network visualization tools, MONGKIE also provides basic graph representations (See Visual represen-
tation of biological entities and interactions) and many interactive ways to explore or edit a network, including Vi-
sual Editor UI, and Data-to-Visual Mapping (See Visual editor UI and Data-to-Visual mapping), zooming, filtering,
searching (See Exploring network), and various graph layouts (See Graph layouts) etc. Furthermore, we implemented
extended models for visualization of more complicated or interwoven biochemical reactions that can be multi-modal
or hyper-graphs (Saraiya et al., 2005) involving more than two sub-components, therefore basic graph representa-
tions failed to model, for example, formation of protein complexes, interactions controlled by others (See Pathway
visualization).

4.1 Visual representation of biological entities and interactions

Graphical representations of biological networks includes how to intuitively visualize a set of connected nodes (or
vertice) corresponding to biological entities, including genes, gene products (protein, transcript factor, miRNA, etc.),
small molecules (compound, metabolite etc.), protein family and complex, and their links (or edges), such as physical
or genetic interactions, regulatory events (transcriptional and translational activation or inhibition, phosphorylation,
etc.), co-expression, shared protein domain, complex formation, trans-location and other biochemical reactions.

MONGKIE provides the sophisticated data models for visualization of biological networks with advanced graph draw-
ing techniques, and therefore can represent different types of biological entities and interactions between them with
out-of-the-box visual styles, shown in Fig. 4.1. Both nodes and edges differ in their style according to their biological
meaning. The style of nodes - e.g. label, font, shape, color, size and icon image - shows the type and state of biological
components, and edges linking a relation participant with the information about the role also differ in their style - e.g.
shape or thickness or color of lines, shape or color of arrows as well as label and font.

4.2 Pathway visualization

MONGKIE provides a built-in software module for pathway visualization, which supports visual analytics and ex-
ploratory studies of metabolic or signaling pathways in an interactive fashion tightly integrated with the human inte-
grated pathway database, hiPathDB (Yu et al., 2012).

Like other types of biological interactions that can be modeled as regular binary-graphs, where interactions are be-
tween exactly two interactors, biological pathways also can be represented as a graph consisting of nodes and edges.
Although these simple models have been shown to yield biological insights, biological pathways can be complex
multi-modal or hyper-graphs (Saraiya et al., 2005), in which an edge could connect an arbitrary number of nodes or
might connect a node to another edge. Therefore basic graph representations are incapable of modeling more com-
plicated and interwoven biochemical reactions that involve more than two sub-components, e.g. the formation of
protein complexes, and interactions that controlled by external controllers. In order to visually capture such complex
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Fig. 4.1: An example of visualization of biological networks
This illustrates how MONGKIE visually represents biological entities and relationships between them, by visualizing an example
network, Glucocorticoid receptor regulatory network, which is a signaling pathway curated by the NCI-Nature PID (Schaefer et

al., 2009).
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biochemical events, MONGKIE presents an optimized pathway visualization based on the sophisticated visualization
model taking into consideration these important domain-specific knowledges.

Fig. 4.2: Visual models for the pathway visualization
A-1 Hierarchical modeling of protein complex assembly (orange border) can be flattened by splitting nodes representing

complexes into their own individual members. A-2 Protein complexes (red nodes). A-3 Protein family (F icon). A-4 Dimer (D
icon). A-5 Sub-cellular location (red icon). B-1 Multiple edges (gray and blue). B-2 Cellular states of nodes, mode of interactions

of edges (activation, inhibition, phospholyration, etc.) B-3 Self interactions. B-4 Hyper-edges connect nodes to another edges
(yellow), for example, one molecule (node) might prevent some other interaction (edge) from occurring.

Fig. 4.2 illustrates how diverse types of complex components and their relationships in biological pathways are
visually represented in MONGKIE. A node representing a biological molecule in a pathway visualization may be
either a protein, family, complex, dimer, enzyme, other small molecules (e.g. compound, metabolites), or especially a
super-node which is a hierarchically decomposed composite node representing adjacency and inclusion relationships,
e.g. the hierarchical modeling of protein complex assembly can be flattened by splitting nodes representing complexes
into their own individual members (see Fig. 4.2 A). An edge in a pathway visualization represents a relationship or
some form of interaction between nodes. The interaction could be one of many types: complex formation, activation,
inhibition, aggregation, trans-location, catalysis, chemical modification, etc. In most cases, single-line connections are
insufficient to capture the whole range of information contained in a biological pathway, because biological entities
are often linked by more than one type of relationship. In such cases, multi-edge networks offer the possibility to link
two entities by multiple edges, in which every edge having a different meaning. Also, hyper-edge connects a node
to another edge, e.g. an inhibitory interaction (edge) actually indicates a biological process by which one molecule
(node) might prevent some other interaction (edge) from occurring (see Fig. 4.2 B).

All theses different types of nodes and edges in the pathway visualization are visually represented with their distinct
visual styles and additional informations, including their sub-cellular location, cellular state - e.g. activated, inhibited,
phospholyrated, etc. Each component of pathways have informations about the originating data source, and hyper-
links to the corresponding web pages is presented at the table view to link relevant databases - eg. NCBI, PubChem,
etc. The force-directed layout algorithm (Frick et al., 1999) is optimized for the virtually automatic placement of
components in the pathways.
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4.3 Visual editor UI and Data-to-Visual mapping

Every component - nodes, edges, and groups - of the visualization model has a set of visual properties, including label
text, text font, stroke, shape, size, color, line shape and width etc. These visual styles of them can be fully customized
individually through the integrated Visual Editor UI which allows the user to edit them in any way the user desires
with numerous predefined palettes. Actual UIs for editing visual properties of nodes, edges, and groups are shown in
Fig. 4.3.

Fig. 4.3: Visual Editor UIs
Visual editor UIs for (A) nodes, (B) edges, and (C) groups with their members.

Each component in the network can have associated data attributes possibly describing visual properties of them. In
addition to selective and manual editing of visual styles, MONKGIE also provides a very useful way to automatically
set visual aspects of components based on their data attributes. This continuous or discrete Data-to-Visual attribute
mapping allows researchers to synoptically view multiple types of data in a network context (see Fig. 4.4). Data-to-
Visual mapping lets the user, for example, load omics data from various high-throughput experiments, e.g. expression
profiles, and visually project them into the network by automatically transforming data to some graphical attributes,
e.g. color, size, visibility etc.

4.4 Exploring network

In order to substantially facilitate network navigation and information extraction, MONGKIE provides sophisticated
options to explore networks in highly interactive ways, including searching, filtering, grouping, manual
or automatic node selection, highlight, dragging, zoom and panning the display, overview of the
complete network, and lastly data table view displaying attributes of nodes and edges in a tabular format.
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Fig. 4.4: Continuous and discrete Data-to-Visual Mapping
Using an example network that are modeling cross-talks between biological pathways, (A) the number of genes in each pathway
was continuously mapped to visual properties (size and color) of the corresponding pathway node. (B) data sources (KEGG or

BioCarta) of each pathway were discretely mapped to node colors.

MONGKIE provides easy-to-use search functions for the loaded network. One can enter any keyword or
regular expression to search all data attributes held in the nodes and edges. The matching nodes or edges immediately
highlighted in the visualization; and selection in the visualization propagates to the selection of the relevant rows
in the data table scrolling to them, and vice versa. Furthermore, the network can be filtered down to interactions
meeting a given filtering constraint according to their attributes. For instance, the network may be filtered
to show only proteins occurring in particular locations, thus reducing the network complexity and restricting the one’s
attention only to interactions within a given sub-cellular location, and this could greatly improve the visual perception
of complex biological networks.

Given the large and complex networks, one common approach to interpret and visualize such networks is trying to
display the complete network on the screen and providing functionalities to zoom, pan, and overview of the network
for exploration. Like many other network visualization tools, MONGKIE provides these basic techniques for network
navigation too. However, as the size and complexity of interactions grow, it is increasingly impossible to understand
underlying structures and extract biological insights from such huge networks just using those basic navigation tech-
niques. Another improved strategy is to dissect the complete network into smaller sub-networks that are manageable,
biologically significant regions that can be understandable (Gehlenborg et al., 2010). These sub-networks are typically
defined as, for example, sets of proteins that are occurring at the same sub-cellular location, or that belong to similar
functional GO terms, or that are members of a densely connected cluster identified through the established network
clustering methods. The resultant sub-networks are typically of a size that is more amenable to visualization and
analysis.

In order to specifically support of these processes of dissection, MONGKIE provides a variety of ways to define
groups of functionally or topologically related nodes, including enrichment analysis for functional modules (See Over-
representation analysis), clustering analysis for topological clusters (See Network clustering), grouping by manual
selection, or automatic partitioning of nodes according to their attributes. The defined groups or sub-networks are
visually represented with distinct styles and importantly laid out separately from other parts in a way that automatically
attracts each other nodes in a group while repelling other groups (See Fig. 5.1), and this geometric separation is
essential to focus only on particular groups without being disturbed by unnecessary or noisy interactions. Additionally,
one can create a new visualization of each sub-network, then analysis it independently from original one from which
it derived.

MONGKIE is developed specially with these grouping functionalities in mind as one of main development
goals so that it can be used to help dissect large interactions, thus reducing the overall complexity, and focusing on
smaller but biologically interesting parts to gain biological insights without being overwhelmed by complexity and
noises in the network.

4.4. Exploring network 59



MONGKIE Supplementary, Release 0.2.1

4.5 Graph layouts

Graph layout algorithms are used to place graph nodes and edges in various geometric distribution for the clarity and
readability of networks such that the number of edges crossing minimized and that the layout represents the overall
structure of the network legibly.

A variety of state-of-the-art layout algorithms are implemented in MONGKIE, including Circular, Grid, Fruchterman-
Reingold (Thomas et al., 1991), Radial Tree (Book et al., 2001), and Force-Directed (Frick et al., 19999) layouts, both
for efficiency and quality (see Fig. 4.5).

Fig. 4.5: Graph Layouts
A variety of state-of-the-art layout algorithms are implemented in MONGKIE, including Circular, Grid, Fruchterman-Reingold,

Radial Tree, and Force-Directed.

Like most of other typical network visualization softwares, we try a force-directed layout first because this layout
can usually well organize most biological networks based on the non-deterministic algorithm that lets forces between
nodes influence the position of the node in the network. All nodes exert repulsive force on the others whereas connected
nodes are attracted to each other. After several iterations in which the positions are adjusted according to the calculated
force, the layout stabilizes, keeping edge-crossings to a minimum (Herman et al., 2000 and Heer et al. 2005). It also
visually animate the process for laying out the network so that one can watch nodes in the network incrementally being
placed in optimum positions and can terminate the algorithm when a good layout is obtained. However, this layout
quickly becomes inadequate if the size and complexity of network are too larger to handle and interact. For such cases,
MONGKIE provides an opportunity to go without animations or to choose other faster but simpler one - e.g. circular,
grid etc.

Each layout algorithm can be easily started, canceled, and customized through the unified layout control UI shown
in Fig. 4.6. Highly configurable layout algorithms also allow the user to change layout settings in real-time, and
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Fig. 4.6: UI for controlling layouts
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therefore dramatically increase user feedback and experience. For instance, settings of the force-directed layout,
including gravity, spring and forces, can be configured and immediately applied even while the algorithm is running.

In addition to automatic layout algorithms, MONGKIE offers another way to interactively change the layout of the
network by manually dragging each node or user-defined groups into any positions, and this is very useful in fine-
tuning the automatic layout or emphasizing important nodes or biologically significant regions in the network by
geometrically separating them from other parts.
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CHAPTER 5

Network Analysis

MONGKIE is designed for the both visualization of biological networks and also analysis of these networks with a
seamless integration between two procedures. MONGKIE includes several of network analytical methods, such as
network clustering, overlay of expression profiles, and over-representation analysis, to recognize putative functional
or structural patterns, and uncover interesting biological meanings from biological interaction networks.

5.1 Network clustering

Fundamentally network-based approaches in systems biology are based on the hypothesis that biological entities rarely
act alone in the cell, instead they interact spatiotemporally with others, forming modules, in order to perform specific
cellular functions (Hartwell et al., 1999 and Alberts et al., 1998). Graph-based clustering algorithms that are mainly
developed in graph theory and recently computational systems biology have been successfully applied to the study of
detection of protein complexes (Krogan et al., 2006) or families (Enright et al., 2002), or identification of functions of
uncharacterized proteins (Bader et al.,2002), or extraction of co-expressed clusters from co-expression networks (Lee
et al., 2004), etc., and shown to obtain good performances for extracting such modules from a variety of biological
interactions.

These so-called ‘network clustering’ methods are also known to be less susceptible to inherent false-positives and more
accurately predict modules made up of functionally relate nodes rather than conventional iterative pair-wise clustering,
where individual relationship - e.g. sequence similarity, co-expression - between two biological entities is investigated
without considering structural patterns in their interactions with neighbors (Freeman et al., 2007).

MONGKIE currently incorporates two popular structure-based network clustering algorithms, including MCODE
(Molecular COmplex DEtection algorithm), MCL (Markov CLustering algorithm), and these make it easy to find
densely inter-connected, thus functionally related nodes in biological interactions, exploit both local and also global
structural patterns, and visually map them onto the network. MCODE is a graph theoretic clustering algorithm for
finding molecular complex in large protein interaction networks (Bader and Hogue, 2003). The MCODE plugin,
which is implemented by porting from the pre-existing plug-in in Cytoscape (Shannon et al., 2003), identifies clusters
by finding regions of significant local density. MCL is a fast and scalable unsupervised clustering algorithm for graphs
based on simulation of the flow in the graph (Van Dongen, 2000). Because MCL is a robust state-of-the-art general
purpose clustering algorithm for large graphs, it can be applied to any complex biological networks, e.g. protein
functional relationship network to look for candidate cancer driver mutations and relevant functional modules they
belong to (Wu et al., 2010).

One can define resultant network clusters (or modules) as groups, therefore they, as described in Exploring network,
can be visually organized and laid out onto the network with distinct visual schemes, as well as displayed in a tabular
format. As shown in Fig. 5.1, each cluster and its members are visualized with a distinct color and shape according to
their cluster membership, also laid out using the optimized force-directed layout algorithm that automatically attracts
each member in a cluster while repelling other clusters. This helps users to visually interpret the coherence of clusters
in the context of the network, that cannot be easily obtained by simply examining lists of clusters or their membership.

63



MONGKIE Supplementary, Release 0.2.1

Fig. 5.1: Network Clustering
This demonstrates the procedure of identification network clusters, organization them onto the network with distinct visual

schemes, and how nodes in the same cluster are laid out coherently.
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Cluster nodes in the network can then be manipulated just like other general nodes for any exploratory purposes, e.g.
one can select, then drag them in order to place in desired positions. One also can create a new visualization for a
sub-network made up of nodes and edges in a cluster.

These features of network clustering and grouping in MONGKIE can facilitate to analyze or visualize the large data
set of biological interactions in a more modular way that can provide biological insight into both local and also
global structures in networks between biologically related nodes - e.g. a pathway affected by mutated genes, proteins
belonging to a same complex or family, or cross-talk among biological pathways etc.

5.2 Gene expression overlay

Gene expression data obtained by micro-array experiments or RNA-seq techniques can provide powerful insights
into underlying cellular states and dynamics when they are well integrated into the context of biological networks.
Therefore, overlaying expression profile data onto a visualized network is an essential way in identifying a set of
genes or proteins that share a related pattern of expression under a particular condition - eg. co-regulated gene sets
and their interactions in a certain disease sample - or capture dynamic changes of their expression levels over a range
of time points or different conditions (Gehlenborg et al., 2010). For these analyses, we require tools that allow users
to visually represent expression profiles of the nodes in the network according to their expression level, thus better
perceive the dynamic mechanism of a underlying biological system being guided by visualized expression patterns or
changes.

MONGKIE provides powerful functionalities for visual analyses of high-throughput omics data in the context of
networks, in particular for the gene expression data analysis of time series or multiple conditions. It supports dynamic
visual representations, including a color gradient, size, and label of relevant nodes, that are easy to separate and
interpret independently in order to depict the corresponding expression profile ratio of gene or protein nodes. Once
expression profiles are imported as data attributes of nodes using the CSV file format, then a heat map visualization,
which is used in a wide range of tools for the process of gene expression visualization (Gehlenborg et al., 2010)
appears to display those expression data as a ratio-based graphical matrix, as well as incorporated within the graphical
representation of nodes in the network (see Fig. 5.2).

An important challenge for expression data analysis is to interpret gene expression data produced from more than one
condition, for example, time series experiments, or multiple perturbation studies. Therefore, it is necessary to consider
all time points or conditions in order to detect temporal patterns and their changes in gene expression profiles whose
values vary over time or different condition. This requires a selective or sequential visualization of multiple expression
levels in the network context. MONGKIE allows users to incorporate such dynamics of gene expression profiles into
the loaded network visualization by offering a way to change the visual mapping - e.g. color, size - of nodes to reflect
the expression levels of a particular time point or condition according to the user selection.

Fig. 5.2 illustrates an example of this process, where gene expression profiles from multiple micro-array experiments
in six cell lines were loaded into the heat map display, and also mapped on corresponding nodes in the network. A
expression level of a particular experiment can be navigated using a sliding bar UI on the bottom of the window, and
also the navigation process can be animated, as introduced in some tools (Hu et al., 2013 and Kincaid et al., 2008),
by automatically switch to visualization of the next experiment with a predefined time interval. This is well suited to
investigating by eye changes of expression levels within a group of interesting genes - e.g. genes that share a same
functional term, members of a network cluster, or deferentially expressed genes - over given experiments. Furthermore,
by arranging visualization windows in a grid (see User Interface), one can in parallel compare multiple visualizations
of the same network, where each visualizes for its navigating experiment - known as the ‘small multiples’ approach
(Gehlenborg et al., 2010).

5.3 Over-representation analysis

A group of interesting genes in the biological network, e.g. a module of potentially related genes has been found
by the Network clustering, may be investigated to find biological pathways or other functional categories like GO
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Fig. 5.2: Overlaying of multiple expression profiles
This demonstrates the procedure of overlaying of gene expression data from multiple experiments onto genes in the network, and

the UI for capturing dynamic changes of their expression levels over a range of different experiments.

(Gene Ontology Consortium, 2004) terms, where they are significantly over-represented. This approach, so-called
‘enrichment analysis’, is widely used in order to study the gene set for their over-representation in certain annotation
classes that are usually related to biological functions of those genes (Huang et al., 2009).

MONGKIE provides a pipeline for this analysis, shown in Fig. 5.3, where researchers perform a statistical test for
enrichment or depletion using the GO categories, in order to identify over-represented functional terms with statis-
tically significance from the selected set of interesting genes in the certain network region. The result of analysis is
displayed in table views with both a list of resultant functional terms and also statistics of the enrichment analysis,
including number of enriched terms, number of population genes, number of query genes, and detailed information
about each annotation term. In the result table, each row of resultant term has a background color that is mapped to its
corresponding p-value - that was calculated using the hyper-geometric testing, and might be adjusted by one of follow-
ing multiple testing correction methods: Bonferroni, Bonferroni-Holm, Benjamini-Hochberg, or Benjamini-Yekutieli
- and the set of resultant term can be reduced based on user’s cut-offs and ranked by their statistical p-values.

Another optimized way to show the result of enriched functional terms in the hierarchical structure, e.g. Gene Ontol-
ogy, is to display them in a tree table. In the tree table view, intermediate terms for tree hierarchy are automatically
included, and users can expand or collapse any sub-tree in the view. Therefore it allows the user to interactively inves-
tigate terms according to specific biological complexity within the hierarchical structure as well as their significance.

Once a list of resultant term is displayed in a tabular format, users can select significant terms of interest, then visualize
the group of relevant nodes or regions annotated with those terms in the network context by mapping distinguishable
visual aspects to them. This visual mapping of functional terms in the context of the network has the distinct advan-
tage of allowing the user to quickly identify by eye both biological functions of certain parts and also higher-order
interactions between those parts in the network that would not be obvious without this type of visual representation.
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Fig. 5.3: GO over-representation analysis
This demonstrates the procedure of enrichment analysis, and visual annotation of relevant nodes or regions (e.g. clusters) in the

network with significantly over-represented GO terms.
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CHAPTER 6

Interaction Sources

Systems biology aims to study the relationships between molecular or functional components to gain insights into the
underlying complexity and dynamics of biological processes from the properties or structure of the interactions (Kitano
et al., 2002). This generally requires interaction data from diverse sources - e.g. protein-protein interactions, signaling
or metabolic pathways - to be integrated, and analyzed together with data derived from high-throughput experiments,
such as genomics, transcriptomics, and proteomics. One example of this integrative approach is to analyze altered
genes in specific disease samples on the context of biological networks. By projecting the list of mutated, amplified,
or deleted genes onto biological networks, one will find statistically significant subsets of related genes that are closely
clustered as network modules or biological pathways affected by such genes.

Network-based multi-omics analyses can thus provide important insights into complex biological mechanisms and
processes - e.g. the biology underlying disease etiology, or progression of several cancer types (Jones et al., 2008) -
and reliable pathway databases as well as high-coverage protein interaction dataset are essential for such an analysis.
MONGKIE is integrated with hiPathDB (Yu et al., 2012) which is the Human Integrated Pathway Database described
below. Furthermore, it provides an interaction manager that allows users to incorporate external interaction data from
multiple sources into the process of network analysis and visualization, and to manage them through an integrated UI.

6.1 hiPathDB

With heterogeneous biological pathway data sets in the diversity of potential data formats available, the integration of
pathway resources has become an important issue in utilizing these resources systematically and efficiently. In order
to utilize these resources to interpret and analyze genomic data using network-based analysis methods, the information
stored in dispersed data repositories needs to be linked and combined in efficient ways, and strongly required to unify
heterogeneous interactions in different pathway data sources into the one general network model.

Here, MONGKIE provides a built-in software module for highly interactive pathway visualization and exploration,
tightly integrated with hiPathDB (Yu et al., 2012). hiPathDB is an integrated pathway database that combines cu-
rated human pathway databases of NCI-Nature PID (Schaefer et al., 2009), Reactome (Croft et al., 2010), BioCarta
(Nishimura, 2001) and KEGG (Kanehisa and Goto, 2000). hiPathDB provides two different types of integration. One
is the pathway-level integration - shown in Figure 3 of Yu et al., 2012 - which is conceptually a simple collection of
individual pathways, was achieved by devising an elaborate model that takes distinct features of four databases into
account, and subsequently reformatting all pathways in accordance with our model - shown in Figure 2 of Yu et al.,
2012 - while maintaining molecular details of signaling processes. Another is the entity-level integration - shown
in Figure 4 of Yu et al., 2012 - creates a single unified pathway, super-pathway, that encompasses all pathways by
merging common components. Even though the detailed molecular-level information such as complex formation or
post-translational modifications tends to be lost in the entity-level integration, such integration makes it possible to
investigate signaling network over the entire pathways and allows identification of pathway cross-talks. Therefore, the
unified super-pathway achieved by entity level integration facilitates the network-based analysis and navigation from
the perspective of biological pathways.
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6.2 Interaction Manager

In addition to biological pathways, there are other types of biological interactions that are well modeled by simple
binary, pair-wise graphs, such as PPIs, TF-target, miRNA-target and genetic interactions, and they are also essential for
the network analysis of genomic data. MONGKIE provides a elegant way to use these types of network as background
networks for the exploratory network-based analysis and visualization, through the Interaction Manager UI, shown in
Fig. 6.1 A.

Fig. 6.1: Interaction Manager
(A) Interaction Manager UI. (B) demonstrates the procedure of dynamic network construction starting with a small part of genes

of interest (orange nodes).

Imported and managed interaction data sources can be utilized for various exploratory and analytical purposes, such
as network generation from a scratch by search query, dynamic network exploration, expansion and filtering of in-
teractions by their sources. For example, there are cases when the size of a interaction network is so huge that it is
impossible to handle and visualize the complete network at once. It is recommended for such situations to follow the
approach of a classical top-down exploration, in which rather than display the entire network in one display, initially
start with a small part of nodes in the network, e.g. deferentially expressed genes, and then iteratively build a larger
network by allowing the user to successively expand particular nodes of interest with their further interactions and
neighbors.

The procedure for this strategy of top-down exploration provided by the Interaction Manager is shown in Fig. 6.1 B.
It allows the user to expand interactions through the context-sensitive right-click menus on a selected nodes of interest
(orange nodes), as well as just to connect existing nodes using the interaction dataset from a data source by selecting
the check-box of that source in the interaction manager UI. Later, the user may delete neighbors out of the interest to
reduce complexities of the network such that he/she focuses on the region of interest. Furthermore, each newly added
node resulting from a expansion action is placed in an appropriate position with an animation, well incorporated into
the force-directed layout algorithm (Frick et al., 1999, Heer et al., 2005), and this allows the user to easily preserve
the so-called mental map (Misue et al., 1995) during exploration of the network.

Users can import their own binary interaction dataset into the interaction manager from files using standard formats -
e.g. GraphML and CSV files. Additionally, visual styles of each interaction source can be fully customized through
the Visual Style editor, and they will be persisted, the latter means that customized visual properties of edges from the
interaction source as well as imported interaction dataset themselves is locally stored and will be available for styling
edges on the next run of the application.
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CHAPTER 7

User Interface

Fig. 7.1 illustrates the main graphical user interface of MONGKIE. The main application window is made up of several
dynamic views using the NetBeans window system that lets the user maximize and minimize, dock and undock, auto-
hide and sliding, and drag-and-drop windows for well organizing views inside the main window.

Fig. 7.1: Graphical User Interface of MONGKIE
The Graphical User Interface (GUI) consist of a main visualization display with other windows, including analysis windows
(network clustering, expression overlay, and enrichment analysis), visual editor, data-to-visual mapping window, data tables,

statistics view, and an overview window.

The network visualization window is placed in the center with many context-sensitive menu items which allow users
to easily communicate with other windows in an interactive way, access to currently important functionalities. Views
in the left side of the main window includes GUIs for those functionalities that require user’s input or control actions,
such as visual editor, data-to-visual mapping, network clustering, enrichment analysis, and graph layout. Those in
the right side display a variety of contextual informations, including overview of the complete network, properties
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of selected nodes or edges, heat map visualization for gene expression data, and graphical charts that show various
statistics in the visualization - e.g. groups or clusters in the network, node visibility after filtering etc. Those views
that need to be organized in a tabular format together with search and filtering functionalities, such as the list of nodes
or edges in the network, the result of enrichment analysis, are placed in the bottom of the main window.

While other views exists only once, the network visualization window can have multiple instances for different vi-
sualizations. This allows users to in parallel compare any number of visualized networks from different conditions,
e.g. gene expression levels from multiple experiments (See Gene expression overlay), by tiling multiple visualization
windows of the same network in a grid, where each one visualizes the information for its own condition.

Settings of the windows in the application, such as the size, position, and arrangement, are fully customizable by re-
sizing or drag-and-drop. The flexibility of window management facilitates coherently working with multiple windows
or views for the process of network visualization, navigation, or analysis. Also, these window settings are persisted
across restart of the application, and later one can restore them to default settings.

Many parts of UI components and UX (User eXperiences) in MONGKIE are strongly inspired by Gephi (Bastian
et al., 2009). We also use the Prefuse (Heer et al., 2005) java library for the graph data structure and interactive
visualization.
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CHAPTER 8

Import and Export

Interaction data sets can be loaded and stored using different file formats, including GraphML (Graph Markup Lan-
guage) and CSV (Comma-Separated Values). GraphML (Graph Markup Language) is a comprehensive and easy-to-use
file format for graphs. Its main features include supports of storing directed or undirected or mixed graphs, hyper-
graphs, hierarchical graphs, graphical representations, references to external data, and application-specific attributes.
CSV (Comma-Separated Values) stores tabular data sets in a plain-text form, and is a basic file format that is widely
supported by a wide range of scientific applications for loading or saving their data sets.

MONGKIE comes with built-in parsers for those files to read a graph or attributes of its nodes and edges from the
given data file. GraphML file fully stores the structural information of a graph, hence it is quite straightforward to
import a graph using that. CSV file, however, requires some extra steps to import a graph. As a first step, one need
to prepare two files - one containing nodes and their attributes, and another containing an edge list and attributes.
The CSV file containing nodes needs to include a column containing unique node IDs. The edge list CSV should
include columns for source and target, containing node IDs of the start and end node for each edge. By simply
going to File -> Import from CSV Files, a dialog window for importing both files will be appear, then the
wizard UI will guide you to remaining steps. In following steps, one can make several modifications to properties of
the importing graph - e.g. one can rename column names, specify if edges are directed or undirected, select
columns of source and target for edges etc. Also, the type of each column in the node or edge table will be
appropriately inferred according to the literal expression of their values - decimal data as Integer, floating points as
Double, comma-separated text fields as String Array. When all steps are gone, the report dialog finally shows
the summary of the imported graph, including number of nodes and edges, type of graph, issues occurred during the
importing process etc. Furthermore, MONGKIE also use the CSV file as a input format in order to import expression
profiles, or additional attributes of nodes or edges through the similar UI concepts applied to importing graphs.

MONGKIE is capable to export the graph in the visualization to 1) the GraphML file that contains all graph elements
in one formatted file, or 2) two CSV files - each file stores the list of nodes and edges in a tabular format respectively.
Exported graph serializations can be later used in not only MONGKIE itself, but also external graph visualization
softwares (Shannon et al., 2003 and Bastian et al., 2009). Once satisfied with the network visualization, one can
save it in one of multiple image formats - vector graphics, like SVG (Scalable Vector Graphics), EPS (Encapsulated
PostScript), or bitmap images, like PNG, JPG, GIF, and BMP files.

MONGKIE also provides its own visual graph file format (VLG) that stores all visualization-wide properties - e.g.
visual representations of each element, graph layout, node positions or visibilities, display scale, etc. - as well as data
attributes of the whole graph in the network visualization, therefore one can save the current analysis in the VLG file,
then later reopen it for continuing the analysis.
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CHAPTER 9

Implementation

MONGKIE is a desktop application written in Java 1.6+ based on the NetBeans RCP (Rich Client Platform), thus it
is executable on all major operating systems such as Windows, Linux, or Mac, and provides robust ways to extend
functionalities of the application with ease. In this section, we first describe the main software design and plug-
in architecture focusing on its robustness and extensibility, then the multi-tiered system powered by RESTFul Web
Service APIs for abstracting data and separating them from the business logics and presentation layers.

9.1 Plug-in architecture

MONGKIE is a java-based application built on top of the NetBeans Rich Client Platform that supports plug-in pro-
gramming architecture, thus it is easy to implement various new plug-ins with additional functionalities. An overview
of its modular architecture is given in Fig. 9.1.

Fig. 9.1: Schematic overview of the plug-in architecture implemented in MONGKIE

Based on its extensible architecture, MONGKIE provides core APIs (Application Programming Interfaces), SPIs
(Service Provider Interfaces), and UI widgets for the base functionalities, such as graph visualization, network analysis,
data integration, and many out-of-the-box supports that enable to build your own plug-ins onto the platform.

For example, The software module for Graph layouts provides well-defined APIs, SPIs and UI components that can
be utilized by plug-in developers (See Fig. 9.2 A). Therefore, if you want to add a new layout algorithm into the
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MONGKIE, you only need to implement the logic of the layout algorithm without having to worry about other things
like UI components, program states, window management, event handling, and data persistence and so on. All of
these fundamental features for developing plug-ins are provided out of the box. This approach can allow a great deal
of flexibility in the building various improvements of existing modules as well as the introducing of new functionalities
or tools.

Fig. 9.2: Development and Management of Plug-ins
(A) an example of developing a layout plug-in implementing a new algorithm. (B) UI for plug-ins management.

MONGKIE also provides a GUI (Graphical User Interface) shown in Fig. 9.2 B, Plug-in Manager, in order to facilitate
the management of different plug-ins. Hence, users can install, update, remove, activate, or deactivate individual plug-
ins through the integrated UI, this allows the customization of the application functionalities according to their needs.

9.2 RESTFul Web service API

The multi-tiered system is applied for abstracting remote data sources and separating control logics from the data and
presentation layers to improve data integrity and accessibility. We put retrieval logics for the remote data at the middle-
tier, which enables to control database connections and provide unified and maintainable data access. RESTFul Web
Service APIs, which are at the middle-tier, are implemented using the JAX-RS technology - the Java API for RESTful
(Representational State Transfer) Web Services. Based on these web APIs, MONGKIE provides the functionality that
allow users to access our integrated data sources and services from outside of the platform in a programmatic fashion
through any REST clients, including Java Applet, Python or Ruby scripts (See Fig. 9.1).

As an example, the implementation and usage of the hiPathDB (Yu et al., 2012) RESTful Web Service API is shown
in Fig. 9.3. hiPathDB APIs allow researchers to retrieve data from hiPathDB database by offering methods to get
pathways given their names, or get member genes given a list of pathways, and some others.
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Fig. 9.3: Overview of the 3-tier system implemented in hiPathDB (Yu et al., 2012)
(1) A REST client written for pathway visualization (blue colors), (2) RESTFul Web service at the middle tier (orange colors), (3)

Relational database backend.
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